	

	DOCUMENTTYPE
	
	16 (17)

	
	
	
	

	TypeUnitOrDepartmentHere
	
	
	

	TypeYourNameHere
	TypeDateHere
	
	

	
	

Guide to OSS Porting using Open C
Overview :

Symbian OS is a typical platform for open source software (OSS) but with the availability of the Open C platform, developing and porting OSS has become easier and quicker. Issues such as size, and licensing are some of the things that the developer must carefully analyze before porting.
Analysis of OSS :

This section explains the tools and tips for effective analysis of Linux OSS.

1. Installing Linux packages in Linux

· Get the latest stable release of OSS from the Internet. Usually OSS comes in a compressed format like .tar, .gz, or bz2.

· Run the configure script using the following command:
 ./configure.
It will look for dependency and creates makefiles.

· Compile the code using make tool.

· Copy the files to the target path using the command make install.

2. Directory analysis

OSS creates the following three subdirectories in the installation directory: include, lib, and bin. These directories contain valuable information required for porting, as explained below:

· include – This directory contains the user include files that need to be exported to the proper export directory in Symbian OS.

· lib – This directory gives an idea of the size of the library. It contains libraries built as a result of OSS compilation. Each of these requires an individual MMP file.

NOTE: Symbian OS compilers produce much smaller-sized libraries than what there are in Linux.

	Linux
	Symbian OS

	.SO extension for dynamic libraries
	.DLL extension for dynamic libraries

	.A extension for static libraries
	.LIB extension for static libraries

· bin – This directory contains the executable built during the compilation of OSS.

· man – This directory contains the man pages of OSS.
	
	

3. Tips and tools

Tools like nm, ldd, and dumpbin are useful in OSS porting:

· ldd – A Linux tool that can be used to find the dependency library list and overall size of the library, obtained by adding the size of all the dependent libraries. In many cases, to build library 'X' another library 'Y' is needed.

· nm – Another Linux tool that prints the symbol table in alphabetical order from one or more object files.

· dumpbin – A Windows-based tool that can be used if Windows port is available for OSS. It gets the list of exported symbols.

The following command can be used to install the software in the user directory:
./configure --prefix=$HOME/<foo>
 The following commands can be used to decompress the file:

tar -xvjf archivefile.tar.bz2

tar -zxvf archivefile.tar.gz

At the end of installing the OSS in Linux, it is good to update the environment variables PKG_CONFIG_PATH and LD_LIBRARY_PATH. One of the many ways to initialize environment variables is to add them in the .bash_rc file.

Makefile gives subtle information about the project. SOURCES in Makefile gives an idea about the source files of the OSS. These files have to be listed in SOURCE in the MMP file.

-D<Foo> in Makefile gives the list of preprocessor declarations. These preprocessor declarations can be done using MACRO in the MMP file.

Preparation of the MMP file and bld.inf :
1. MMP file

An .mmp project definition file specifies the properties of a project in a platform and compiler-independent way. The MMP file is very similar to ‘Makefile’ of Linux. MMP file exists per .so, .a, or .EXE .
The contents of a sample MMP file created for libjpeg are shown below:

TARGET
libjpeg.dll

TARGETTYPE
DLL

UID
0x1000008d 0x0xE0000100

CAPABILITY All -Tcb

EpocAllowDllData

USERINCLUDE
.

SYSTEMINCLUDE
\epoc32\include\stdapis

SYSTEMINCLUDE
\epoc32\include

SOURCEPATH
.

// LIBSOURCES

SOURCE
jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c

SOURCE
jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c

SOURCE
jcphuff.c jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c

SOURCE
jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c

SOURCE
jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c

SOURCE
jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c

SOURCE
jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c jquant1.c

SOURCE
jquant2.c jutils.c jmemmgr.c

// SYSDEPSOURCES

SOURCE
jmemansi.c

LIBRARY
euser.lib

LIBRARY
libc.lib

MACRO
HAVE_CONFIG_H

MACRO
__SYMBIAN32__

The following table gives a brief introduction to the MMP file keywords found in above file. See Symbian OS technical reference for more details.

	Keyword
	Description

	TARGETTYPE
	Target type.Can be DLL, EXE, or LIB. Other types are also supported. For more information, seehttp://www.symbian.com/Developer.

	TARGET
	Name of the target.

	UID
	Unique identifier of the target. It is recommended to use test UIDs from the range 0xE0000000-0xEFFFFFFF which is targeted for development use only. For production quality code, UIDs must be requested from Symbian(https://www.symbiansigned.com/app/page) before the application can be sent for signing.

	CAPABILITY
	Capability requirement of the target.

NOTE! Even if the example uses All-TCB capabilities, it is strongly recommended to use a more narrow set of capabilities to have the application successfully signed.

For more information, see http://www.symbian.com/Developer.

	EpocAllowDllData
	Allow global static data in the target

	USERINCLUDE
	Local file include path. The compiler will look in this path for the files included with “ ”. For example#include "config.h"

	SYSTEMINCLUDE
	System file include path. The compiler will look in this path for the files included with < >. For example #include <stdio.h>

	SOURCEPATH
	Source path for the source files.s

	SOURCE
	Source file listing.

	LIBRARY
	Dependent DLL library file list.

	STATICLIBRARY
	Dependent static library file list.

	MACRO
	Preprocessor declarations. Makefile declares these preprocessor declarations using –D flag.

	
	

2. bld.inf
bld.inf is a component definition file, used by bldmake to define the abld.bat and makefiles to be created. bld.inf can be loosely compared to configure script of Linux. There is one bld.inf for entire the OSS. If the project is divided into more than one module, each module can have an individual bld.inf file. Have a look at the contents of the sample MMP file below created for libjpeg.

PRJ_PLATFORMS

default

PRJ_MMPFILES

jpeg.mmp

PRJ_EXPORTS

jpeglib.h \epoc32\include\jpeg-6b\jpeglib.h

jconfig.h \epoc32\include\jpeg-6b\jconfig.h

jmorecfg.h \epoc32\include\jpeg-6b\jmorecfg.h

jerror.h \epoc32\include\jpeg-6b\jerror.h

The following table gives a brief introduction to the bld.inf keywords.

	Keyword
	Description

	PRJ_PLATFORMS
	Platform to which makefiles will be created

	PRJ_MMPFILES
	MMP file list

	PRJ_EXPORTS
	List of public header files for target library users. This list can be prepared by looking at the include directory in Linux installation.

Compilation and build process in Symbian OS :
This article discusses a few basic things about the compilation and build process in Symbian OS. Refer to the public S60 C++ SDK documentation for more details.

The bldmake tool processes the component description file bld.inf in the current directory and generates the batch file abld.bat and several build batch makefiles (.make) . The makefiles are used by abld to carry out the various stages of building the component.

The basic usage of abld command is:

abld command[options][platform][build][program]

This enables the programmer to build for different platforms with varied specifications. The parameter command specifies which action to perform to the abld tool. The actions can be build, clean, cleanexport, etc. The parameteroptions includes –c, -w etc., these enable the user to check for the presence of releasables etc. The parameter platform specifies the platform for which the project will be built. The platform can be WINSCW, GCCE, GCCXML, EDG, ARMV5, VS6, CW_IDE or VS2003. The parameter build specifies whether to build for debug (udeb) or release (urel) version. Finally the parameter program specifies which project definition file or mmp file to build. If left unspecified, all the MMP files mentioned in the bld.inf file are built.

For more details logon to http://www.symbian.com/Developer
The example below demonstrates the use of bldmake:

bldmake bldfiles

The abld build command compiles and links the target.

abld build

The abld freeze command freezes the project export. This is needed only for DLLs.

abld freeze
1. Creating PKG file and Installation file for the Target

A package (PKG) file is a text file containing items or statements that define the information required by the installation (SIS) file creation utility makesis. The PKG file format can be broken down into the following items:

· Languages

· Language code table

· Package-header

· Vendor

· Logo

· Package-signature
· Package-body

· Dependency

· Properties

For more information on PKG files seehttp://www.symbian.com/developer/techlib/v9.1docs/doc_source/n10356/installing-ref/pkg_format/index.html.

The makesis utility creates software installation packages (SIS files) based on the information and the file locations on the source PC or target phone, defined in a package (PKG) file.

For example, consider the code snippet given below:
makesis somefile.pkg

The code goes through the PKG file and by default creates somefile.sis in the directory where the PKG file is present.

For more information on the makesis utility seehttp://www.symbian.com/Developer.

After creating the SIS file it, has to be signed using signsisto install it on the phone. Signsis is a Symbian supplied tool to digitally sign software installation (SIS) files using a specified certificate and private key. For example consider the code snippet given below:

signsis somefile.sis somefile.sisx rd.cer rd-key.pem
The parameter somefile.sis gives, the path to the SIS file which is to be signed. The second parameter, somefile.sisx specifies the name of the resultant signed SIS file. The third parameter, rd.cer specifies the path to the certificate file and the last parameter, rd-key.pem specifies the path to the file containing the private key.

For more information on signsis utility see
http://www.symbian.com/developer/techlib/v9.1docs/doc_source/n10356/installing-ref/signsistoolreference.guide.html
Troubleshooting - some tips and tricks :
This section addresses the basic differences in the way things are done in Symbian OS and in Linux.
1. Symbian directory structure

In Symbian OS, project source files are arranged based on the directory pattern sown below.

	Directory
	Description

	src
	Contains all the source files of the project.

	inc
	Contains all the header files of the project.

	group
	Contains MMP files, and bld.inf.

The developer can choose whether to follow this strictly.

	
	

2. EXPORT_C, DEF file and ordinal numbers

This applies only for the DLL target type. If a DLL wants to export an API, the code definition should start with the macro EXPORT_C.

// Declaration

#ifdef SYMBIAN

#define GLOBAL(type)

EXPORT_C type

#else

#define GLOBAL(type)

type

#endif /*SYMBIAN*/
 // Definition

 GLOBAL(void)

 jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)

 {

 int i;

 /* Guard against version mismatches between library and caller. */

 cinfo->mem = NULL;

/* so jpeg_destroy knows mem mgr not called */

 if (version != JPEG_LIB_VERSION)

 ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);

 if (structsize != SIZEOF(struct jpeg_decompress_struct))

 ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,

 (int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);

 ...
}
Whenever a DLL is built on Symbian OS, it creates three files:

· <target>.dll is the actual DLL that gets loaded at runtime

· <target>.lib is the static library which contains wrappers for each DLL exported function that, when run, will locate and execute the real function’s code in the appropriate runtime-loaded DLL.

· <target>.def gets created when the user executes abld freeze. The .def file contains the list of exported DLL functions along with their ordinal numbers. Symbian OS does not store exported symbol names in DLL; instead, the exported functions are referenced using only their ordinal numbers. Storing the ordinal numbers instead of names reduces the size of the DLL.

The following is a sample .def file created for libjpeg:.

EXPORTS

jcopy_block_row @ 1 NONAME

jcopy_sample_rows @ 2 NONAME

jdiv_round_up @ 3 NONAME

jinit_1pass_quantizer @ 4 NONAME

jinit_2pass_quantizer @ 5 NONAME

jinit_c_coef_controller @ 6 NONAME

jinit_c_main_controller @ 7 NONAME

jinit_c_master_control @ 8 NONAME

jinit_c_prep_controller @ 9 NONAME

jinit_color_converter @ 10 NONAME

The following example shows how to declare and define an exportable function from a DLL and to make it callable from a Symbian C++ application:

In xxx.h
#ifdef __cplusplus

extern "C"

#endif

IMPORT_C int Foo();

In xxx.cpp
extern "C" EXPORT_C int Foo()

 {

 return something;

 }

	
	

3. dlsym or g_module_symbol

Since DLL entry points are not exported by name, DLL symbol lookup functions do not work in Symbian OS. The functions dlsym from libdl and g_module_symbol from glib are examples of such functions. Look for usage of these functions in the OSS port and change the code. For example:

ret = g_module_symbol (module, "jinit_c_prep_controller", &ptr);

needs to be changed to:

ret = g_module_symbol (module, "9", &ptr);

	
	

3.1.Problem with a variable list of arguments in macros

This section suggests a way to overcome the problems faced when macros with a variable list of arguments are used.

#define DEBUG(a,...)

The above statement causes a compilation error. One of the solutions to solve this problem is as follows:

#define DEBUG _DEBUG

static inline void _DEBUG (const char *a, ...)

{

}

	
	

3.2.Symbian compiler performs strict type checking
Type casting is typically required in many places in OSS code. Sometimes preprocessing a particular file and analyzing the preprocessed file gives many hints about the possible errors.

Consider the following code snippet:

char * buf=”hello world”;

 int i= buf;

The code compiles with a warning with GCC compiler on Linux but gives rise to an error with Symbian compiler.

	
	

3.3.Keep changes to OSS to a minimum
While porting the OSS code, keep the changes to the OSS code as few as possible. The OSS code is already tested and used by a bigger community, and is unlikely to have any compilation errors or major logical errors. In many cases code changes that are necessary brings potential logical flaws to the OSS port. Minimum changes to the OSS code while porting also helps in merging to the new OSS.

	
	

4. Exporting variables from a DLL

Exporting data from a DLL is not allowed in Symbian OS . The following pattern can be used:

1. Do not export global variables.

2. Export one method that returns a pointer to that variable.

3. Define a macro for the user of the DLL. See the example below

4.1. Do not export global variables.
Within DLL, there is one global variable, for example:

int globalVal;

4.2. Export one method that returns a pointer to that variable
extern "C" EXPORT_C int* GlbData ()

 {

 return &globalVal

 }

4.3. Define a macro for the user of the DLL
Within the DLL header (e.g.,xxx.h), define the following:

#ifdef __cplusplus

extern "C"

#endif

IMPORT_C int* GlbData ();

#define globalVal (*GlbData())

	
	

5. Application is not loaded

The absence of the dependent libraries could be one of the reasons for the application not to load in the mobile device. On the target device, Symbian OS looks for libraries in

· c:\sys\bin or in

· z:\sys\bin

Do make sure that all the libraries are present in either of the above-mentioned libraries.

	
	

6. Dynamic array allocation

Statements such as int counts[2*size]; are not allowed in Symbian C++. An alternative would be to create counts dynamically and free the memory after its usage.

	
	

7. Capabilities not known

Capabilities are specified in the MMP file. The primary information source is the Open C API reference documentation. If problems with capabilities remain, one known method to find the capability is to analyze the [Debug Messages] window in CodeWarrior IDE (while debugging). During development, CAPABILITY All –Tcb is acceptable, but for release code it is good practice to give a valid capability in the MMP file in order to have the application successfully signed. The following is a sample of a capability error found in the [Debug Messages] window.

PlatSec ERROR - Capability check failed - Process hellogst.exe[10015942]0001 was checked by Thread c32exe.exe[101f7989]0001::ESock_IP and was found to be missing the capabilities: NetworkServices.

	
	

8. Environment variables
At the moment, environment variables are not completely supported in Symbian C++. Therefore be wary of using library functions like getenv() which work on environment variables. Make sure the library initialization routine calls setenv() with the proper value of the environment variable. Also, be wary of functions like g_get_home_dir() which may not work as they behave in Linux.

if ((memenv = getenv("JPEGMEM")) != NULL) // will not work properly

Suggested change:

void LibraryInit()

{

 setenv ("JPEGMEM ", "XXXXX", 1);

}

	
	

9. Assembly code
The syntax for inline assembly code is different in Symbian OS. The following is a code snippet of assembly code syntax in Symbian OS.

EXPORT_C __NAKED__ TUint16 TTemplate::Register16(TUint anAddr)

/**

 Read a 16-bit register

 @returns register contents

*/

 {

 asm("ldrh
r0,[r0]");

__JUMP(,lr);

 }

In common practice the assembly code has the extension .CIA in Symbian OS, whereas in Linux the assembly code has the extension .S.

	
	

10. Glossary

The following table lists terms used in Linux and their approximate equivalents in Symbian OS:

	Linux
	Symbian

	-D of Makefile
	MACRO of theMMP file

	-I of Makefile
	USERINCLUDE of the MMP file

	SO
	DLL

	A
	LIB

	Makefile
	MMP file

	SOURCES of Makefile
	SOURCE of the MMP file

	/usr/include/
	\EPOC32\INCLUDE

	/usr/lib/
	\epoc32\data\c\sys\bin on an emulator, \sys\bin on a target device

The following table lists a few important things about the Symbian OS:

	ABI_DIR
	Platform, e.g., winscw or armv5

	BUILD_DIR
	UDEB or UREL

	c: drive in emulator
	\epoc32\data\c and \epoc32\winscw\c

	z: drive in emulator
	Z:\epoc32\data\z

	bld.inf
	Lists public header files and their location in \EPOC32\INCLUDE

How to export global data from a DLL

Exporting global data from a DLL to be accessed by either Open C or Symbian C++ applications is one of the typical problems that developers encounter.

NOTE! It is strongly recommended to avoid having global data in DLLs due to following reasons:

· EKA2 emulator allows only a DLL with WSD to load into a single process.

· RAM usage for WSD data chunk is atleast one 4K RAM page (the smallest possible RAM allocation), irrespective of how much static data is required.

· Chunks are a finite resource on ARMv5. Every process loading WSD enabled DLLs uses a chunk to hold the data.

· There are ARM architecture 4 and 5 specific costs and limitations that apply only to DLLs that link against “fixed processes”

· There is a limit on the number of DLLs in a process with WSD.

On having understood the above limitations, the following pattern can be used for exporting global data from a DLL:

1. Do not export global variables.

2. Export one method that returns a pointer to that variable.

3. Define a macro for the user of the DLL.

See the example below:

1. Do not export global variables.

Within DLL, say there is one global variable, for example:

int globalVal;

2. Export one method that returns a pointer to that variable

extern "C" EXPORT_C int* GlbData ()

 {

 return &globalVal

 }

3. Define a macro for the user of the DLL

Within the DLL header (e.g., xxx.h), define the following:

#ifdef __cplusplus

extern "C"

#endif

IMPORT_C int* GlbData ();

#define globalVal (*GlbData())

And the usage is like:

#include <xxx.h> // DLL header

int main()

 {

 int i = 0;

 globalVal = 10;

 globalVal++;

 i = globalVal;

 return 0;

 }
Possibilities of panic and crash
Since Symbian OS has different mechanisms for handling or trapping errors and exceptions, standard libraries written on top of Symbian as part of Open C, may throw some panics or crash with Symbian-specific errors. This section lists out the possibilities of such a scenario.

Even though such errors can happen, these error cases can be eliminated if the user is aware of them and knows the solution.

	
	

String conversions

In case the developer is developing applications where Open C-based functionality is called from a Symbian/S60 application, the need for conversions between Symbian descriptors and different string types provided by Open C is needed.

	
	

Porting challenges and probable solutions

There are few limitations of OpenC as few of the system dependend APIs are not implemented. So while porting OSS which uses some of these APIs like fork, exec, signals etc a work around needs to be provided. And few deviations need to be taken from the OSS implementation so as to suit the Symbian phone environment.
1. Fork, Exec and related APIs

The OpenC does not support fork () and exec () APIs since it needs a great amount of change in the symbian kernel. But it supports limited functionalities of fork and exec through the popen () and posix_spawn () APIs. When there is no IPC between parent and child process we can use posix_spawn (). When there is some IPC we can use the popen () API. This scenario occurs where the parent process creates a child process, and the parent communicates with the child by using a single pipe.
2. Other unsupported APIs from OpenC

Some other APIs missing in Open C are poll, socketpair, readdir_r and dirfd. Select() can be used as an alternative to poll. Full duplex pipe is created by using "socketpair" which can be simulated by creating two different sockets and later connecting them. readdir_r can be simulated by calling readdir in CS section using mutex. dirfd can be easily simullated as the fd of the directory is available in DIR structure associated with directory.

_935227290.doc

