GstTensor

Hold tensor data

Members

id (GQuark) –

semantically identify the contents of the tensor

layout (GstTensorLayout) –

Indicate tensor layout

data_type (GstTensorDataType) –

GstTensorDataType of tensor data

data (GstBuffer *) –

GstBuffer holding tensor data

dims_order (GstTensorDimOrder) –

Indicate tensor elements layout in memory.

num_dims (gsize) –

number of tensor dimensions

dims (gsize *) –

number of tensor dimensions

Since : 1.26


GstAnalytics.Tensor

Hold tensor data

Members

id (GLib.Quark) –

semantically identify the contents of the tensor

Indicate tensor layout

data (Gst.Buffer) –

Gst.Buffer holding tensor data

dims_order (GstAnalytics.TensorDimOrder) –

Indicate tensor elements layout in memory.

num_dims (Number) –

number of tensor dimensions

dims ([ Number ]) –

number of tensor dimensions

Since : 1.26


GstAnalytics.Tensor

Hold tensor data

Members

id (GLib.Quark) –

semantically identify the contents of the tensor

Indicate tensor layout

data (Gst.Buffer) –

Gst.Buffer holding tensor data

dims_order (GstAnalytics.TensorDimOrder) –

Indicate tensor elements layout in memory.

num_dims (int) –

number of tensor dimensions

dims ([ int ]) –

number of tensor dimensions

Since : 1.26


Constructors

gst_tensor_alloc

GstTensor *
gst_tensor_alloc (gsize num_dims)

Allocate a tensor with num_dims dimensions.

Parameters:

num_dims

Number of dimension of the tensors

Returns ( [transfer: full][not nullable])

tensor allocated

Since : 1.26


GstAnalytics.Tensor.prototype.alloc

function GstAnalytics.Tensor.prototype.alloc(num_dims: Number): {
    // javascript wrapper for 'gst_tensor_alloc'
}

Allocate a tensor with num_dims dimensions.

Parameters:

num_dims (Number)

Number of dimension of the tensors

Returns (GstAnalytics.Tensor)

tensor allocated

Since : 1.26


GstAnalytics.Tensor.alloc

def GstAnalytics.Tensor.alloc (num_dims):
    #python wrapper for 'gst_tensor_alloc'

Allocate a tensor with num_dims dimensions.

Parameters:

num_dims (int)

Number of dimension of the tensors

Returns (GstAnalytics.Tensor)

tensor allocated

Since : 1.26


gst_tensor_new_simple

GstTensor *
gst_tensor_new_simple (GQuark id,
                       GstTensorDataType data_type,
                       GstBuffer * data,
                       GstTensorDimOrder dims_order,
                       gsize num_dims,
                       gsize * dims)

Allocates a new GstTensor of dims_order ROW_MAJOR or COLUMN_MAJOR and with an interleaved layout

Parameters:

id

semantically identify the contents of the tensor

data_type

GstTensorDataType of tensor data

data ( [transfer: full])

GstBuffer holding tensor data

dims_order

Indicate tensor dimension indexing order

num_dims

number of tensor dimensions

dims ( [arraylength=num_dims])

tensor dimensions. Value of 0 mean the dimension is dynamic.

Returns

A newly allocated GstTensor

Since : 1.26


GstAnalytics.Tensor.prototype.new_simple

function GstAnalytics.Tensor.prototype.new_simple(id: GLib.Quark, data_type: GstAnalytics.TensorDataType, data: Gst.Buffer, dims_order: GstAnalytics.TensorDimOrder, num_dims: Number, dims: [ Number ]): {
    // javascript wrapper for 'gst_tensor_new_simple'
}

Allocates a new GstAnalytics.Tensor of dims_order ROW_MAJOR or COLUMN_MAJOR and with an interleaved layout

Parameters:

id (GLib.Quark)

semantically identify the contents of the tensor

data (Gst.Buffer)

Gst.Buffer holding tensor data

dims_order (GstAnalytics.TensorDimOrder)

Indicate tensor dimension indexing order

num_dims (Number)

number of tensor dimensions

dims ([ Number ])

tensor dimensions. Value of 0 mean the dimension is dynamic.

Returns (GstAnalytics.Tensor)

A newly allocated GstAnalytics.Tensor

Since : 1.26


GstAnalytics.Tensor.new_simple

def GstAnalytics.Tensor.new_simple (id, data_type, data, dims_order, num_dims, dims):
    #python wrapper for 'gst_tensor_new_simple'

Allocates a new GstAnalytics.Tensor of dims_order ROW_MAJOR or COLUMN_MAJOR and with an interleaved layout

Parameters:

id (GLib.Quark)

semantically identify the contents of the tensor

data (Gst.Buffer)

Gst.Buffer holding tensor data

dims_order (GstAnalytics.TensorDimOrder)

Indicate tensor dimension indexing order

num_dims (int)

number of tensor dimensions

dims ([ int ])

tensor dimensions. Value of 0 mean the dimension is dynamic.

Returns (GstAnalytics.Tensor)

A newly allocated GstAnalytics.Tensor

Since : 1.26


Methods

gst_tensor_check_type

gboolean
gst_tensor_check_type (const GstTensor * tensor,
                       GstTensorDimOrder order,
                       gsize num_dims,
                       GstTensorDataType data_type,
                       GstBuffer * data)

Validate the tensor whether it mathces the reading order, dimensions and the data type. Validate whether the GstBuffer has enough size to hold the tensor data.

Parameters:

tensor
No description available
order

The order of the tensor to read from the memory

num_dims

The number of dimensions that the tensor can have

data_type

The data type of the tensor

data ( [transfer: full])

GstBuffer holding tensor data

Returns

TRUE if the GstTensor has the reading order from the memory matching order, dimensions matching num_dims, data type matching data_type and the GstBuffer mathcing data has enough size to hold the tensor data. Otherwise FALSE will be returned.

Since : 1.28


GstAnalytics.Tensor.prototype.check_type

function GstAnalytics.Tensor.prototype.check_type(order: GstAnalytics.TensorDimOrder, num_dims: Number, data_type: GstAnalytics.TensorDataType, data: Gst.Buffer): {
    // javascript wrapper for 'gst_tensor_check_type'
}

Validate the tensor whether it mathces the reading order, dimensions and the data type. Validate whether the Gst.Buffer has enough size to hold the tensor data.

Parameters:

tensor (GstAnalytics.Tensor)
No description available

The order of the tensor to read from the memory

num_dims (Number)

The number of dimensions that the tensor can have

data_type (GstAnalytics.TensorDataType)

The data type of the tensor

data (Gst.Buffer)

Gst.Buffer holding tensor data

Returns (Number)

TRUE if the GstAnalytics.Tensor has the reading order from the memory matching order, dimensions matching num_dims, data type matching data_type and the Gst.Buffer mathcing data has enough size to hold the tensor data. Otherwise FALSE will be returned.

Since : 1.28


GstAnalytics.Tensor.check_type

def GstAnalytics.Tensor.check_type (self, order, num_dims, data_type, data):
    #python wrapper for 'gst_tensor_check_type'

Validate the tensor whether it mathces the reading order, dimensions and the data type. Validate whether the Gst.Buffer has enough size to hold the tensor data.

Parameters:

tensor (GstAnalytics.Tensor)
No description available

The order of the tensor to read from the memory

num_dims (int)

The number of dimensions that the tensor can have

data_type (GstAnalytics.TensorDataType)

The data type of the tensor

data (Gst.Buffer)

Gst.Buffer holding tensor data

Returns (bool)

TRUE if the GstAnalytics.Tensor has the reading order from the memory matching order, dimensions matching num_dims, data type matching data_type and the Gst.Buffer mathcing data has enough size to hold the tensor data. Otherwise FALSE will be returned.

Since : 1.28


gst_tensor_copy

GstTensor *
gst_tensor_copy (const GstTensor * tensor)

Create a copy of tensor.

Parameters:

tensor ( [transfer: none][nullable])

a GstTensor to be copied

Returns ( [transfer: full][nullable])

a new GstTensor

Since : 1.26


GstAnalytics.Tensor.prototype.copy

function GstAnalytics.Tensor.prototype.copy(): {
    // javascript wrapper for 'gst_tensor_copy'
}

Create a copy of tensor.

Parameters:

tensor (GstAnalytics.Tensor)

a GstAnalytics.Tensor to be copied

Since : 1.26


GstAnalytics.Tensor.copy

def GstAnalytics.Tensor.copy (self):
    #python wrapper for 'gst_tensor_copy'

Create a copy of tensor.

Parameters:

tensor (GstAnalytics.Tensor)

a GstAnalytics.Tensor to be copied

Since : 1.26


gst_tensor_free

gst_tensor_free (GstTensor * tensor)

Free tensor

Parameters:

tensor ( [in][transfer: full])

pointer to tensor to free

Since : 1.26


GstAnalytics.Tensor.prototype.free

function GstAnalytics.Tensor.prototype.free(): {
    // javascript wrapper for 'gst_tensor_free'
}

Free tensor

Parameters:

tensor (GstAnalytics.Tensor)

pointer to tensor to free

Since : 1.26


GstAnalytics.Tensor.free

def GstAnalytics.Tensor.free (self):
    #python wrapper for 'gst_tensor_free'

Free tensor

Parameters:

tensor (GstAnalytics.Tensor)

pointer to tensor to free

Since : 1.26


gst_tensor_get_dims

gsize *
gst_tensor_get_dims (GstTensor * tensor,
                     gsize * num_dims)

Gets the dimensions of the tensor.

Parameters:

tensor

a GstTensor

num_dims ( [out])

The number of dimensions

Returns ( [arraylength=num_dims][transfer: none])

The dims array form the tensor

Since : 1.26


GstAnalytics.Tensor.prototype.get_dims

function GstAnalytics.Tensor.prototype.get_dims(): {
    // javascript wrapper for 'gst_tensor_get_dims'
}

Gets the dimensions of the tensor.

Parameters:

Returns a tuple made of:

([ Number ] )

The dims array form the tensor

num_dims (Number )

The dims array form the tensor

Since : 1.26


GstAnalytics.Tensor.get_dims

def GstAnalytics.Tensor.get_dims (self):
    #python wrapper for 'gst_tensor_get_dims'

Gets the dimensions of the tensor.

Parameters:

Returns a tuple made of:

([ int ] )

The dims array form the tensor

num_dims (int )

The dims array form the tensor

Since : 1.26


Functions

gst_tensor_data_type_get_name

const gchar *
gst_tensor_data_type_get_name (GstTensorDataType data_type)

Get a string version of the data type

Parameters:

data_type

a GstTensorDataType

Returns

a constant string with the name of the data type

Since : 1.28


GstAnalytics.Tensor.prototype.data_type_get_name

function GstAnalytics.Tensor.prototype.data_type_get_name(data_type: GstAnalytics.TensorDataType): {
    // javascript wrapper for 'gst_tensor_data_type_get_name'
}

Get a string version of the data type

Returns (String)

a constant string with the name of the data type

Since : 1.28


GstAnalytics.Tensor.data_type_get_name

def GstAnalytics.Tensor.data_type_get_name (data_type):
    #python wrapper for 'gst_tensor_data_type_get_name'

Get a string version of the data type

Returns (str)

a constant string with the name of the data type

Since : 1.28


Enumerations

GstTensorDataType

Describe the type of data contain in the tensor.

Members
GST_TENSOR_DATA_TYPE_INT4 (0) –

signed 4 bit integer tensor data

GST_TENSOR_DATA_TYPE_INT8 (1) –

signed 8 bit integer tensor data

GST_TENSOR_DATA_TYPE_INT16 (2) –

signed 16 bit integer tensor data

GST_TENSOR_DATA_TYPE_INT32 (3) –

signed 32 bit integer tensor data

GST_TENSOR_DATA_TYPE_INT64 (4) –

signed 64 bit integer tensor data

GST_TENSOR_DATA_TYPE_UINT4 (5) –

unsigned 4 bit integer tensor data

GST_TENSOR_DATA_TYPE_UINT8 (6) –

unsigned 8 bit integer tensor data

GST_TENSOR_DATA_TYPE_UINT16 (7) –

unsigned 16 bit integer tensor data

GST_TENSOR_DATA_TYPE_UINT32 (8) –

unsigned 32 bit integer tensor data

GST_TENSOR_DATA_TYPE_UINT64 (9) –

unsigned 64 bit integer tensor data

GST_TENSOR_DATA_TYPE_FLOAT16 (10) –

16 bit floating point tensor data

GST_TENSOR_DATA_TYPE_FLOAT32 (11) –

32 bit floating point tensor data

GST_TENSOR_DATA_TYPE_FLOAT64 (12) –

64 bit floating point tensor data

GST_TENSOR_DATA_TYPE_BFLOAT16 (13) –

"brain" 16 bit floating point tensor data

GST_TENSOR_DATA_TYPE_STRING (14) –

UTF-8 string

(Since: 1.28)
GST_TENSOR_DATA_TYPE_BOOL (15) –

A boolean value stored in 1 byte.

(Since: 1.28)
GST_TENSOR_DATA_TYPE_COMPLEX64 (16) –

A 64-bit complex number stored in 2 32-bit values.

(Since: 1.28)
GST_TENSOR_DATA_TYPE_COMPLEX128 (17) –

A 128-bit complex number stored in 2 64-bit values.

(Since: 1.28)
GST_TENSOR_DATA_TYPE_FLOAT8E4M3FN (18) –

A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN and no infinite values (FN). See this paper for more details

(Since: 1.28)
GST_TENSOR_DATA_TYPE_FLOAT8E4M3FNUZ (19) –

A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details

(Since: 1.28)
GST_TENSOR_DATA_TYPE_FLOAT8E5M2 (20) –

A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits. See this paper for more details

(Since: 1.28)
GST_TENSOR_DATA_TYPE_FLOAT8E5M2FNUZ (21) –

A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details

(Since: 1.28)

Since : 1.26


GstAnalytics.TensorDataType

Describe the type of data contain in the tensor.

Members
GstAnalytics.TensorDataType.INT4 (0) –

signed 4 bit integer tensor data

GstAnalytics.TensorDataType.INT8 (1) –

signed 8 bit integer tensor data

GstAnalytics.TensorDataType.INT16 (2) –

signed 16 bit integer tensor data

GstAnalytics.TensorDataType.INT32 (3) –

signed 32 bit integer tensor data

GstAnalytics.TensorDataType.INT64 (4) –

signed 64 bit integer tensor data

GstAnalytics.TensorDataType.UINT4 (5) –

unsigned 4 bit integer tensor data

GstAnalytics.TensorDataType.UINT8 (6) –

unsigned 8 bit integer tensor data

GstAnalytics.TensorDataType.UINT16 (7) –

unsigned 16 bit integer tensor data

GstAnalytics.TensorDataType.UINT32 (8) –

unsigned 32 bit integer tensor data

GstAnalytics.TensorDataType.UINT64 (9) –

unsigned 64 bit integer tensor data

GstAnalytics.TensorDataType.FLOAT16 (10) –

16 bit floating point tensor data

GstAnalytics.TensorDataType.FLOAT32 (11) –

32 bit floating point tensor data

GstAnalytics.TensorDataType.FLOAT64 (12) –

64 bit floating point tensor data

GstAnalytics.TensorDataType.BFLOAT16 (13) –

"brain" 16 bit floating point tensor data

GstAnalytics.TensorDataType.STRING (14) –

UTF-8 string

(Since: 1.28)
GstAnalytics.TensorDataType.BOOL (15) –

A boolean value stored in 1 byte.

(Since: 1.28)
GstAnalytics.TensorDataType.COMPLEX64 (16) –

A 64-bit complex number stored in 2 32-bit values.

(Since: 1.28)
GstAnalytics.TensorDataType.COMPLEX128 (17) –

A 128-bit complex number stored in 2 64-bit values.

(Since: 1.28)
GstAnalytics.TensorDataType.FLOAT8E4M3FN (18) –

A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN and no infinite values (FN). See this paper for more details

(Since: 1.28)
GstAnalytics.TensorDataType.FLOAT8E4M3FNUZ (19) –

A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details

(Since: 1.28)
GstAnalytics.TensorDataType.FLOAT8E5M2 (20) –

A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits. See this paper for more details

(Since: 1.28)
GstAnalytics.TensorDataType.FLOAT8E5M2FNUZ (21) –

A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details

(Since: 1.28)

Since : 1.26


GstAnalytics.TensorDataType

Describe the type of data contain in the tensor.

Members
GstAnalytics.TensorDataType.INT4 (0) –

signed 4 bit integer tensor data

GstAnalytics.TensorDataType.INT8 (1) –

signed 8 bit integer tensor data

GstAnalytics.TensorDataType.INT16 (2) –

signed 16 bit integer tensor data

GstAnalytics.TensorDataType.INT32 (3) –

signed 32 bit integer tensor data

GstAnalytics.TensorDataType.INT64 (4) –

signed 64 bit integer tensor data

GstAnalytics.TensorDataType.UINT4 (5) –

unsigned 4 bit integer tensor data

GstAnalytics.TensorDataType.UINT8 (6) –

unsigned 8 bit integer tensor data

GstAnalytics.TensorDataType.UINT16 (7) –

unsigned 16 bit integer tensor data

GstAnalytics.TensorDataType.UINT32 (8) –

unsigned 32 bit integer tensor data

GstAnalytics.TensorDataType.UINT64 (9) –

unsigned 64 bit integer tensor data

GstAnalytics.TensorDataType.FLOAT16 (10) –

16 bit floating point tensor data

GstAnalytics.TensorDataType.FLOAT32 (11) –

32 bit floating point tensor data

GstAnalytics.TensorDataType.FLOAT64 (12) –

64 bit floating point tensor data

GstAnalytics.TensorDataType.BFLOAT16 (13) –

"brain" 16 bit floating point tensor data

GstAnalytics.TensorDataType.STRING (14) –

UTF-8 string

(Since: 1.28)
GstAnalytics.TensorDataType.BOOL (15) –

A boolean value stored in 1 byte.

(Since: 1.28)
GstAnalytics.TensorDataType.COMPLEX64 (16) –

A 64-bit complex number stored in 2 32-bit values.

(Since: 1.28)
GstAnalytics.TensorDataType.COMPLEX128 (17) –

A 128-bit complex number stored in 2 64-bit values.

(Since: 1.28)
GstAnalytics.TensorDataType.FLOAT8E4M3FN (18) –

A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN and no infinite values (FN). See this paper for more details

(Since: 1.28)
GstAnalytics.TensorDataType.FLOAT8E4M3FNUZ (19) –

A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details

(Since: 1.28)
GstAnalytics.TensorDataType.FLOAT8E5M2 (20) –

A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits. See this paper for more details

(Since: 1.28)
GstAnalytics.TensorDataType.FLOAT8E5M2FNUZ (21) –

A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details

(Since: 1.28)

Since : 1.26


GstTensorDimOrder

Indicate to read tensor from memory in row-major or column-major order.

Members
GST_TENSOR_DIM_ORDER_ROW_MAJOR (0) –

elements along a row are consecutive in memory

GST_TENSOR_DIM_ORDER_COL_MAJOR (1) –

elements along a column are consecutive in memory

Since : 1.26


GstAnalytics.TensorDimOrder

Indicate to read tensor from memory in row-major or column-major order.

Members
GstAnalytics.TensorDimOrder.ROW_MAJOR (0) –

elements along a row are consecutive in memory

GstAnalytics.TensorDimOrder.COL_MAJOR (1) –

elements along a column are consecutive in memory

Since : 1.26


GstAnalytics.TensorDimOrder

Indicate to read tensor from memory in row-major or column-major order.

Members
GstAnalytics.TensorDimOrder.ROW_MAJOR (0) –

elements along a row are consecutive in memory

GstAnalytics.TensorDimOrder.COL_MAJOR (1) –

elements along a column are consecutive in memory

Since : 1.26


GstTensorLayout

Indicate tensor storage in memory.

Members
GST_TENSOR_LAYOUT_CONTIGUOUS (0) –

indicate the tensor is stored in a dense format in memory

Since : 1.26


GstAnalytics.TensorLayout

Indicate tensor storage in memory.

Members
GstAnalytics.TensorLayout.TENSOR_LAYOUT_CONTIGUOUS (0) –

indicate the tensor is stored in a dense format in memory

Since : 1.26


GstAnalytics.TensorLayout

Indicate tensor storage in memory.

Members
GstAnalytics.TensorLayout.TENSOR_LAYOUT_CONTIGUOUS (0) –

indicate the tensor is stored in a dense format in memory

Since : 1.26


The results of the search are