GstTensor
Hold tensor data
Members
id
(GQuark)
–
semantically identify the contents of the tensor
layout
(GstTensorLayout)
–
Indicate tensor layout
data_type
(GstTensorDataType)
–
GstTensorDataType of tensor data
dims_order
(GstTensorDimOrder)
–
Indicate tensor elements layout in memory.
num_dims
(gsize)
–
number of tensor dimensions
dims
(gsize *)
–
number of tensor dimensions
Since : 1.26
GstAnalytics.Tensor
Hold tensor data
Members
id
(GLib.Quark)
–
semantically identify the contents of the tensor
layout
(GstAnalytics.TensorLayout)
–
Indicate tensor layout
data_type
(GstAnalytics.TensorDataType)
–
GstAnalytics.TensorDataType of tensor data
data
(Gst.Buffer)
–
Gst.Buffer holding tensor data
dims_order
(GstAnalytics.TensorDimOrder)
–
Indicate tensor elements layout in memory.
num_dims
(Number)
–
number of tensor dimensions
dims
([ Number ])
–
number of tensor dimensions
Since : 1.26
GstAnalytics.Tensor
Hold tensor data
Members
id
(GLib.Quark)
–
semantically identify the contents of the tensor
layout
(GstAnalytics.TensorLayout)
–
Indicate tensor layout
data_type
(GstAnalytics.TensorDataType)
–
GstAnalytics.TensorDataType of tensor data
data
(Gst.Buffer)
–
Gst.Buffer holding tensor data
dims_order
(GstAnalytics.TensorDimOrder)
–
Indicate tensor elements layout in memory.
num_dims
(int)
–
number of tensor dimensions
dims
([ int ])
–
number of tensor dimensions
Since : 1.26
Constructors
gst_tensor_alloc
GstTensor * gst_tensor_alloc (gsize num_dims)
Allocate a tensor with num_dims dimensions.
Parameters:
num_dims
–
Number of dimension of the tensors
tensor allocated
Since : 1.26
GstAnalytics.Tensor.prototype.alloc
function GstAnalytics.Tensor.prototype.alloc(num_dims: Number): {
// javascript wrapper for 'gst_tensor_alloc'
}
Allocate a tensor with num_dims dimensions.
Parameters:
Number of dimension of the tensors
tensor allocated
Since : 1.26
GstAnalytics.Tensor.alloc
def GstAnalytics.Tensor.alloc (num_dims):
#python wrapper for 'gst_tensor_alloc'
Allocate a tensor with num_dims dimensions.
Parameters:
Number of dimension of the tensors
tensor allocated
Since : 1.26
gst_tensor_new_simple
GstTensor * gst_tensor_new_simple (GQuark id, GstTensorDataType data_type, GstBuffer * data, GstTensorDimOrder dims_order, gsize num_dims, gsize * dims)
Allocates a new GstTensor of dims_order ROW_MAJOR or COLUMN_MAJOR and with an interleaved layout
Parameters:
id
–
semantically identify the contents of the tensor
data_type
–
GstTensorDataType of tensor data
data
(
[transfer: full])
–
GstBuffer holding tensor data
dims_order
–
Indicate tensor dimension indexing order
num_dims
–
number of tensor dimensions
dims
(
[arraylength=num_dims])
–
tensor dimensions. Value of 0 mean the dimension is dynamic.
A newly allocated GstTensor
Since : 1.26
GstAnalytics.Tensor.prototype.new_simple
function GstAnalytics.Tensor.prototype.new_simple(id: GLib.Quark, data_type: GstAnalytics.TensorDataType, data: Gst.Buffer, dims_order: GstAnalytics.TensorDimOrder, num_dims: Number, dims: [ Number ]): {
// javascript wrapper for 'gst_tensor_new_simple'
}
Allocates a new GstAnalytics.Tensor of dims_order ROW_MAJOR or COLUMN_MAJOR and with an interleaved layout
Parameters:
semantically identify the contents of the tensor
GstAnalytics.TensorDataType of tensor data
Gst.Buffer holding tensor data
Indicate tensor dimension indexing order
number of tensor dimensions
tensor dimensions. Value of 0 mean the dimension is dynamic.
A newly allocated GstAnalytics.Tensor
Since : 1.26
GstAnalytics.Tensor.new_simple
def GstAnalytics.Tensor.new_simple (id, data_type, data, dims_order, num_dims, dims):
#python wrapper for 'gst_tensor_new_simple'
Allocates a new GstAnalytics.Tensor of dims_order ROW_MAJOR or COLUMN_MAJOR and with an interleaved layout
Parameters:
semantically identify the contents of the tensor
GstAnalytics.TensorDataType of tensor data
Gst.Buffer holding tensor data
Indicate tensor dimension indexing order
number of tensor dimensions
tensor dimensions. Value of 0 mean the dimension is dynamic.
A newly allocated GstAnalytics.Tensor
Since : 1.26
Methods
gst_tensor_check_type
gboolean gst_tensor_check_type (const GstTensor * tensor, GstTensorDimOrder order, gsize num_dims, GstTensorDataType data_type, GstBuffer * data)
Validate the tensor whether it mathces the reading order, dimensions and the data type. Validate whether the GstBuffer has enough size to hold the tensor data.
Parameters:
tensor
–
order
–
The order of the tensor to read from the memory
num_dims
–
The number of dimensions that the tensor can have
data_type
–
The data type of the tensor
data
(
[transfer: full])
–
GstBuffer holding tensor data
Since : 1.28
GstAnalytics.Tensor.prototype.check_type
function GstAnalytics.Tensor.prototype.check_type(order: GstAnalytics.TensorDimOrder, num_dims: Number, data_type: GstAnalytics.TensorDataType, data: Gst.Buffer): {
// javascript wrapper for 'gst_tensor_check_type'
}
Validate the tensor whether it mathces the reading order, dimensions and the data type. Validate whether the Gst.Buffer has enough size to hold the tensor data.
Parameters:
The order of the tensor to read from the memory
The number of dimensions that the tensor can have
The data type of the tensor
Gst.Buffer holding tensor data
TRUE if the GstAnalytics.Tensor has the reading order from the memory matching order, dimensions matching num_dims, data type matching data_type and the Gst.Buffer mathcing data has enough size to hold the tensor data. Otherwise FALSE will be returned.
Since : 1.28
GstAnalytics.Tensor.check_type
def GstAnalytics.Tensor.check_type (self, order, num_dims, data_type, data):
#python wrapper for 'gst_tensor_check_type'
Validate the tensor whether it mathces the reading order, dimensions and the data type. Validate whether the Gst.Buffer has enough size to hold the tensor data.
Parameters:
The order of the tensor to read from the memory
The number of dimensions that the tensor can have
The data type of the tensor
Gst.Buffer holding tensor data
TRUE if the GstAnalytics.Tensor has the reading order from the memory matching order, dimensions matching num_dims, data type matching data_type and the Gst.Buffer mathcing data has enough size to hold the tensor data. Otherwise FALSE will be returned.
Since : 1.28
gst_tensor_copy
GstTensor * gst_tensor_copy (const GstTensor * tensor)
Create a copy of tensor.
Parameters:
tensor
(
[transfer: none][nullable])
–
a GstTensor to be copied
a new GstTensor
Since : 1.26
GstAnalytics.Tensor.prototype.copy
function GstAnalytics.Tensor.prototype.copy(): {
// javascript wrapper for 'gst_tensor_copy'
}
Create a copy of tensor.
Parameters:
a GstAnalytics.Tensor to be copied
a new GstAnalytics.Tensor
Since : 1.26
GstAnalytics.Tensor.copy
def GstAnalytics.Tensor.copy (self):
#python wrapper for 'gst_tensor_copy'
Create a copy of tensor.
Parameters:
a GstAnalytics.Tensor to be copied
a new GstAnalytics.Tensor
Since : 1.26
gst_tensor_free
gst_tensor_free (GstTensor * tensor)
Free tensor
Parameters:
tensor
(
[in][transfer: full])
–
pointer to tensor to free
Since : 1.26
GstAnalytics.Tensor.prototype.free
function GstAnalytics.Tensor.prototype.free(): {
// javascript wrapper for 'gst_tensor_free'
}
Free tensor
Parameters:
pointer to tensor to free
Since : 1.26
GstAnalytics.Tensor.free
def GstAnalytics.Tensor.free (self):
#python wrapper for 'gst_tensor_free'
Free tensor
Parameters:
pointer to tensor to free
Since : 1.26
gst_tensor_get_dims
gsize * gst_tensor_get_dims (GstTensor * tensor, gsize * num_dims)
Gets the dimensions of the tensor.
The dims array form the tensor
Since : 1.26
GstAnalytics.Tensor.prototype.get_dims
function GstAnalytics.Tensor.prototype.get_dims(): {
// javascript wrapper for 'gst_tensor_get_dims'
}
Gets the dimensions of the tensor.
Parameters:
Returns a tuple made of:
The dims array form the tensor
The dims array form the tensor
Since : 1.26
GstAnalytics.Tensor.get_dims
def GstAnalytics.Tensor.get_dims (self):
#python wrapper for 'gst_tensor_get_dims'
Gets the dimensions of the tensor.
Parameters:
Returns a tuple made of:
The dims array form the tensor
The dims array form the tensor
Since : 1.26
Functions
gst_tensor_data_type_get_name
const gchar * gst_tensor_data_type_get_name (GstTensorDataType data_type)
Get a string version of the data type
Parameters:
data_type
–
a constant string with the name of the data type
Since : 1.28
GstAnalytics.Tensor.prototype.data_type_get_name
function GstAnalytics.Tensor.prototype.data_type_get_name(data_type: GstAnalytics.TensorDataType): {
// javascript wrapper for 'gst_tensor_data_type_get_name'
}
Get a string version of the data type
Parameters:
a constant string with the name of the data type
Since : 1.28
GstAnalytics.Tensor.data_type_get_name
def GstAnalytics.Tensor.data_type_get_name (data_type):
#python wrapper for 'gst_tensor_data_type_get_name'
Get a string version of the data type
Parameters:
a constant string with the name of the data type
Since : 1.28
Enumerations
GstTensorDataType
Describe the type of data contain in the tensor.
Members
GST_TENSOR_DATA_TYPE_INT4
(0)
–
signed 4 bit integer tensor data
GST_TENSOR_DATA_TYPE_INT8
(1)
–
signed 8 bit integer tensor data
GST_TENSOR_DATA_TYPE_INT16
(2)
–
signed 16 bit integer tensor data
GST_TENSOR_DATA_TYPE_INT32
(3)
–
signed 32 bit integer tensor data
GST_TENSOR_DATA_TYPE_INT64
(4)
–
signed 64 bit integer tensor data
GST_TENSOR_DATA_TYPE_UINT4
(5)
–
unsigned 4 bit integer tensor data
GST_TENSOR_DATA_TYPE_UINT8
(6)
–
unsigned 8 bit integer tensor data
GST_TENSOR_DATA_TYPE_UINT16
(7)
–
unsigned 16 bit integer tensor data
GST_TENSOR_DATA_TYPE_UINT32
(8)
–
unsigned 32 bit integer tensor data
GST_TENSOR_DATA_TYPE_UINT64
(9)
–
unsigned 64 bit integer tensor data
GST_TENSOR_DATA_TYPE_FLOAT16
(10)
–
16 bit floating point tensor data
GST_TENSOR_DATA_TYPE_FLOAT32
(11)
–
32 bit floating point tensor data
GST_TENSOR_DATA_TYPE_FLOAT64
(12)
–
64 bit floating point tensor data
GST_TENSOR_DATA_TYPE_BFLOAT16
(13)
–
"brain" 16 bit floating point tensor data
GST_TENSOR_DATA_TYPE_STRING
(14)
–
UTF-8 string
(Since: 1.28)GST_TENSOR_DATA_TYPE_BOOL
(15)
–
A boolean value stored in 1 byte.
(Since: 1.28)GST_TENSOR_DATA_TYPE_COMPLEX64
(16)
–
A 64-bit complex number stored in 2 32-bit values.
(Since: 1.28)GST_TENSOR_DATA_TYPE_COMPLEX128
(17)
–
A 128-bit complex number stored in 2 64-bit values.
(Since: 1.28)GST_TENSOR_DATA_TYPE_FLOAT8E4M3FN
(18)
–
A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN and no infinite values (FN). See this paper for more details
(Since: 1.28)GST_TENSOR_DATA_TYPE_FLOAT8E4M3FNUZ
(19)
–
A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details
(Since: 1.28)GST_TENSOR_DATA_TYPE_FLOAT8E5M2
(20)
–
A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits. See this paper for more details
(Since: 1.28)GST_TENSOR_DATA_TYPE_FLOAT8E5M2FNUZ
(21)
–
A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details
(Since: 1.28)Since : 1.26
GstAnalytics.TensorDataType
Describe the type of data contain in the tensor.
Members
GstAnalytics.TensorDataType.INT4
(0)
–
signed 4 bit integer tensor data
GstAnalytics.TensorDataType.INT8
(1)
–
signed 8 bit integer tensor data
GstAnalytics.TensorDataType.INT16
(2)
–
signed 16 bit integer tensor data
GstAnalytics.TensorDataType.INT32
(3)
–
signed 32 bit integer tensor data
GstAnalytics.TensorDataType.INT64
(4)
–
signed 64 bit integer tensor data
GstAnalytics.TensorDataType.UINT4
(5)
–
unsigned 4 bit integer tensor data
GstAnalytics.TensorDataType.UINT8
(6)
–
unsigned 8 bit integer tensor data
GstAnalytics.TensorDataType.UINT16
(7)
–
unsigned 16 bit integer tensor data
GstAnalytics.TensorDataType.UINT32
(8)
–
unsigned 32 bit integer tensor data
GstAnalytics.TensorDataType.UINT64
(9)
–
unsigned 64 bit integer tensor data
GstAnalytics.TensorDataType.FLOAT16
(10)
–
16 bit floating point tensor data
GstAnalytics.TensorDataType.FLOAT32
(11)
–
32 bit floating point tensor data
GstAnalytics.TensorDataType.FLOAT64
(12)
–
64 bit floating point tensor data
GstAnalytics.TensorDataType.BFLOAT16
(13)
–
"brain" 16 bit floating point tensor data
GstAnalytics.TensorDataType.STRING
(14)
–
UTF-8 string
(Since: 1.28)GstAnalytics.TensorDataType.BOOL
(15)
–
A boolean value stored in 1 byte.
(Since: 1.28)GstAnalytics.TensorDataType.COMPLEX64
(16)
–
A 64-bit complex number stored in 2 32-bit values.
(Since: 1.28)GstAnalytics.TensorDataType.COMPLEX128
(17)
–
A 128-bit complex number stored in 2 64-bit values.
(Since: 1.28)GstAnalytics.TensorDataType.FLOAT8E4M3FN
(18)
–
A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN and no infinite values (FN). See this paper for more details
(Since: 1.28)GstAnalytics.TensorDataType.FLOAT8E4M3FNUZ
(19)
–
A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details
(Since: 1.28)GstAnalytics.TensorDataType.FLOAT8E5M2
(20)
–
A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits. See this paper for more details
(Since: 1.28)GstAnalytics.TensorDataType.FLOAT8E5M2FNUZ
(21)
–
A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details
(Since: 1.28)Since : 1.26
GstAnalytics.TensorDataType
Describe the type of data contain in the tensor.
Members
GstAnalytics.TensorDataType.INT4
(0)
–
signed 4 bit integer tensor data
GstAnalytics.TensorDataType.INT8
(1)
–
signed 8 bit integer tensor data
GstAnalytics.TensorDataType.INT16
(2)
–
signed 16 bit integer tensor data
GstAnalytics.TensorDataType.INT32
(3)
–
signed 32 bit integer tensor data
GstAnalytics.TensorDataType.INT64
(4)
–
signed 64 bit integer tensor data
GstAnalytics.TensorDataType.UINT4
(5)
–
unsigned 4 bit integer tensor data
GstAnalytics.TensorDataType.UINT8
(6)
–
unsigned 8 bit integer tensor data
GstAnalytics.TensorDataType.UINT16
(7)
–
unsigned 16 bit integer tensor data
GstAnalytics.TensorDataType.UINT32
(8)
–
unsigned 32 bit integer tensor data
GstAnalytics.TensorDataType.UINT64
(9)
–
unsigned 64 bit integer tensor data
GstAnalytics.TensorDataType.FLOAT16
(10)
–
16 bit floating point tensor data
GstAnalytics.TensorDataType.FLOAT32
(11)
–
32 bit floating point tensor data
GstAnalytics.TensorDataType.FLOAT64
(12)
–
64 bit floating point tensor data
GstAnalytics.TensorDataType.BFLOAT16
(13)
–
"brain" 16 bit floating point tensor data
GstAnalytics.TensorDataType.STRING
(14)
–
UTF-8 string
(Since: 1.28)GstAnalytics.TensorDataType.BOOL
(15)
–
A boolean value stored in 1 byte.
(Since: 1.28)GstAnalytics.TensorDataType.COMPLEX64
(16)
–
A 64-bit complex number stored in 2 32-bit values.
(Since: 1.28)GstAnalytics.TensorDataType.COMPLEX128
(17)
–
A 128-bit complex number stored in 2 64-bit values.
(Since: 1.28)GstAnalytics.TensorDataType.FLOAT8E4M3FN
(18)
–
A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN and no infinite values (FN). See this paper for more details
(Since: 1.28)GstAnalytics.TensorDataType.FLOAT8E4M3FNUZ
(19)
–
A non-IEEE 8-bit floating point format with 4 exponent bits and 3 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details
(Since: 1.28)GstAnalytics.TensorDataType.FLOAT8E5M2
(20)
–
A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits. See this paper for more details
(Since: 1.28)GstAnalytics.TensorDataType.FLOAT8E5M2FNUZ
(21)
–
A non-IEEE 8-bit floating point format with 5 exponent bits and 2 mantissa bits, with NaN, no infinite values (FN) and no negative zero (UZ). See this paper for more details
(Since: 1.28)Since : 1.26
GstTensorDimOrder
Indicate to read tensor from memory in row-major or column-major order.
Members
GST_TENSOR_DIM_ORDER_ROW_MAJOR
(0)
–
elements along a row are consecutive in memory
GST_TENSOR_DIM_ORDER_COL_MAJOR
(1)
–
elements along a column are consecutive in memory
Since : 1.26
GstAnalytics.TensorDimOrder
Indicate to read tensor from memory in row-major or column-major order.
Members
GstAnalytics.TensorDimOrder.ROW_MAJOR
(0)
–
elements along a row are consecutive in memory
GstAnalytics.TensorDimOrder.COL_MAJOR
(1)
–
elements along a column are consecutive in memory
Since : 1.26
GstAnalytics.TensorDimOrder
Indicate to read tensor from memory in row-major or column-major order.
Members
GstAnalytics.TensorDimOrder.ROW_MAJOR
(0)
–
elements along a row are consecutive in memory
GstAnalytics.TensorDimOrder.COL_MAJOR
(1)
–
elements along a column are consecutive in memory
Since : 1.26
GstTensorLayout
Indicate tensor storage in memory.
Members
GST_TENSOR_LAYOUT_CONTIGUOUS
(0)
–
indicate the tensor is stored in a dense format in memory
Since : 1.26
GstAnalytics.TensorLayout
Indicate tensor storage in memory.
Members
GstAnalytics.TensorLayout.TENSOR_LAYOUT_CONTIGUOUS
(0)
–
indicate the tensor is stored in a dense format in memory
Since : 1.26
GstAnalytics.TensorLayout
Indicate tensor storage in memory.
Members
GstAnalytics.TensorLayout.TENSOR_LAYOUT_CONTIGUOUS
(0)
–
indicate the tensor is stored in a dense format in memory
Since : 1.26
The results of the search are