

static void
_f_do_barnacle_install_properties(GObjectClass

*gobject_class)
{

 GParamSpec *pspec;

 /* Party code attribute */
 pspec = g_param_spec_uint64

(F_DO_BARNACLE_CODE,
 "Barnacle code.",
 "Barnacle code",

 0,
 G_MAXUINT64,

 G_MAXUINT64 /*
default value */,

 G_PARAM_READABLE
| G_PARAM_WRITABLE |

 G_PARAM_PRIVATE);

 g_object_class_install_property (gobject_class,

F_DO_BARNACLE_PROP_CODE,

Víctor Manuel Jáquez Leal
vjaquez@igalia.com

Servo & GStreamer

Servo

Servo is a modern, high-

performance browser

engine designed for both

application and

embedded use.

https://github.com/servo/servo/

GitHub workflow

https://github.com/servo/servo/

Rust

● zero-cost abstractions
● move semantics
● guaranteed memory safety
● threads without data races
● trait-based generics
● pattern matching
● type inference
● minimal runtime
● efficient C bindings

Servo/Media Crate

● Abstraction Layer for media operations

● Audio package for WebAudio

● Player package for <audio> and <video>
● Backends:

– GStreamer (through gstreamer-rs)

● https://github.com/servo/media

https://github.com/servo/media

gstreamer-rs

● GStreamer
bindings for Rust
● GitHub workflow

(for now...)

https://github.com/sdroege/gstreamer-rs/

https://github.com/sdroege/gstreamer-rs/

Servo/Media Player Backend

● It uses GstPlayer API
● In gst-plugins-bad

(for now)
● Convenience API for

A/V playback

WebRender

● A GPU based renderer for the Servo
● It paints the frames (images or textures)

Player Current status

● It works! :)
● Simple A/V playback
● WebRender paints frames as images

Work in Progress

● Seeking (almost merged)
● Hardware acceleration
● Zero copy (as much as possible)

Hardware acceleration

● Hardware acceleration decoding depends on
the supported and installed elements
● OMX
● V4L
● VA-API
● ...

Zero copy (or almost)

● GStreamer should deliver GL textures
● Some of those decoders may produce EGL images

or DMAbufs (OMX, VA-API)
● Upload them into the GL context using

 { glupload ! glconvert ! appsink }
● WebRender will render them as composited

textures

gstreamer-gl

● Add bindings for GstGL API
● gstreamer-gl in gstreamer-sys ✓

– No GL API exposing
● gstreamer-gl in gstreamer-rs

– EGL / GLX / Wayland support as compilation defined
features (dependencies)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

