What's new with
GStreamer & Rust

GStreamer Conference 2018
26 October 2018, Edinburgh

Sebastian 'slomo’ Droge
< sebastian@centricular.com >


mailto:sebastian@centricular.com







Why Rust?

®




Fast, explicit, zero-overhead & modern



Memory safety and thread-safety



Status of the bindings



What exists?

e Almost all of core, most of the libraries covered
= Basically full-featured
= Audio/video, pbutils, player, net, base, webrtc,
sdp, rtsp, rtsp-server libraries
e Subclassing for
= Element, Bin, Pipeline
= Base/PushSrc, BaseTransform, BaseSink,
Aggregator
= Pad/ProxyPad/GhostPad, AggregatorPad
= ChildProxy, UriHandler



Seriously consider Rust for your next
GStreamer-based project



Updates since last year

e 0.9,0.10, 0.11 and 0.12 major
releases
= more bugfix releases
e gst-plugin-rs release
e New contributors (23+)
e New examples, example elements
e \arious tutorials ported



Many new users and applications
using the bindings



Some code examples



Buffer from any Rust memory

// Create a 320x240 BGRx black memory

let mem = vec![0; 320*240%*4];

// Fill it somehow here

let buffer = gst::Buffer::from slice (mem);



Safer time calculations

// Get a generic gst::Segment from somewhere and try to handle it
// as time segment. All values are in gst::ClockTime
let segment = segment.downcast mut::<gst::ClockTime> () ?;

// gst::CLOCK TIME NONE calculations don't wrap around
let stop = segment.get stop() + 10 * gst::SECOND;
// stop stays NONE or is 10s higher now

// Set stop if it's smaller than duration
let dur = element.query duration::<gst::ClockTime> () ?;

1f !stop.is none() & stop < dur ({
segment.set stop(stop);
} else {

segment.set stop (dur);



Status return types

// Make use of Rust-style error handling via Result
element.set state(gst::State::Playing)
.into_result () ?;



Query/Message/Event API

let mut g = gst::Query::new position(gst::Format::Time);
1if !pipeline.query (&mut g) { return None; }

// Type-system knows that this is still a position query
let pos = g.get result();

// Previously

let mut g = gst::Query::new position(gst::Format::Time);
1f !pipeline.query(g.get mut () .unwrap()) { return None; }
let pos = match g.view() {

QueryView: :Position(ref p) => p.get result(),

=> unreachable! (),

7



New bindings



WebRTC



RTSP server



Discoverer and EncodingProfile (encodebin)



Metas, BufferPools, CapsFeatures



Lots of other smaller things



What else?

Usability improvements & bugfixes



gst-plugin-rs

e [Lots of new base classes
e 2 HowTos, more to come
e Various new elements
= rust-av (experimental)
= togglerecord,
threadshare
= NDI

= Example elements



Seriously consider Rust for your
next GStreamer plugin, too!



Success Stories



Servo: webaudio + audio/video

https.//servo.org


https://servo.org/

GNOME applications

e Fractal (Riot.im client)

= https://wiki.gnome.org/Apps/Fractal
e Podcasts

= ttps://wiki.gnome.org/Apps/Podcasts



https://wiki.gnome.org/Apps/Fractal
https://wiki.gnome.org/Apps/Podcasts

Newtek NDI audio/video source

https://github.com/teltek/gst-plugin-ndi


https://github.com/teltek/gst-plugin-ndi

glide - Cross-platform, simple video player

https://github.com/philn/glide


https://github.com/philn/glide

Media TOC - Split media files into chapters

https://github.com/fengalin/media-toc


https://github.com/fengalin/media-toc

... and more!

Search on GitHub, crates.io, etc.



What next?



The bindings are basically "done"



Move to freedesktop.org GitLab
and become part of the GStreamer project



Bindings for the GL library



Write more applications and plugins in Rust



... and library code?



Your chance to get involved!



Unsorted ideas

RTSP connection/message, RTSP server
SDP

adaptivedemux, HLS/DASH

HTTP server sink

Codec parsers

RTP

Unit/integration tests for C
components



Consider Rust instead of C in the future



Thanks! Questions?

sebastian@centricular.com

https://github.com/sdroege/gstreamer-rs
https://github.com/sdroege/gst-plugin-rs



https://github.com/sdroege/gstreamer-rs
https://github.com/sdroege/gst-plugin-rs

