

static void
_f_do_barnacle_install_properties(GObjectClass

*gobject_class)
{

 GParamSpec *pspec;

 /* Party code attribute */
 pspec = g_param_spec_uint64

(F_DO_BARNACLE_CODE,
 "Barnacle code.",
 "Barnacle code",

 0,
 G_MAXUINT64,

 G_MAXUINT64 /*
default value */,

 G_PARAM_READABLE
| G_PARAM_WRITABLE |

 G_PARAM_PRIVATE);

 g_object_class_install_property (gobject_class,

F_DO_BARNACLE_PROP_CODE,

Philippe Normand
philn@igalia.com

GStreamer conference

Edinburgh

25th-26th October 2018

Multimedia in WPE
Current status & plans

mailto:philn@igalia.com

Who am I?

● Fiddling with WebKit and GStreamer since 2009

● WebKit committer and reviewer

● GStreamer committer

● Partner at Igalia

● Worker-owned coop, currently around 70 happy Igalians
around the world

● Provides consulting services for various Free Software
projects

Talk Outline

● What is WPE

● Basic infrastructure for Media playback

● Adaptive streaming in HTML5: Media Source Extensions

● WebRTC

● Media-capabilities

● WPE in the wild: i-MX6

WPE, Web Platform for Embedded

WPE, general architecture

● Relies on WebKit’s multi-process (mainly WebProcess,
NetworkProcess and UIProcess)

● HTML RenderTree layer composition in WebProcess

● Final presentation of composited image deferred to out-of-tree
backends

● WPEBackend selected at runtime by the UIProcess (Browser)

● Stripped down GLib public API

libwpe

● Previously known as WPEBackend

● Dependency on libxkbcommon for keymapping

● ViewBackend for rendering

● EGL renderer backend

WPEBackend-fdo

● Relies on wayland-egl
● Cross-process buffer sharing
● API for:

● EGLImages
● Or wl_resource objects
● Or Linux dma-buf information (already used

internally)
● Combined with Mesa
● Works on desktop & embedded

Infrastructure for <video>, <audio>
& WebAudio

<audio> & <video> in WPE

● Playbin-based MediaPlayerPrivate implementation

● Playbin3 support!

● Streams collection handling
● Good match in-band tracks support!

● GL Video rendering with a custom appsink

● Custom GstAllocator using WebKit’s FastMalloc

● White list of supported containers and codecs

● Codec installer support effectively useless
● AV1 decoding support!

WebAudio

● Current backend is ~ stable
● Decoding pipeline still relying on decodebin
● Playback pipeline

● Currently using a custom bin containing appsrc
elements → interleave

● Soon:
– Leverage planar audio support?
– Rewrite source element based on audiosrc

Debug tooling

● Pipeline dumps?
● Who likes GST_DEBUG_DUMP_DOT_DIR ?

● Per-pipeline debug logs?
● GST_DEBUG=wat¿?

● Gst-debugger?
● Tracers?
● ...

Gst Web-Inspector: Soon!

Adaptive streaming: MSE

By Alicia Boya & Enrique Ocaña

The MSE backend, TL;DR

● Chunks queued from JavaScript world to a SourceBuffer

● One GStreamer WebKit Append pipeline per SourceBuffer

● Demuxing and parsing of samples

● Samples stored at WebCore’s MSE layer

● Playback pipeline using a dedicated MediaPlayerPrivate
implementation

● Playbin-based
● Custom source bin element (one appsrc per SourceBuffer)

MSE-related improvements in
GStreamer

● Quite a few improvements in qtdemux for:

● Samples demuxing in push-mode

● Edit list support for push-mode

● Segment event handling

● Duration-related bug fixes

● => Around 15 patches so far!
● Matroskademux improvements

● Emit no-more-pads earlier (after parsing Tracks) (used to be sent
while processing the first Cluster)

● Multi-Tracks parsing

● Fixes for WebM byte-stream format handling

Current status & plans

● MSE enabled in GNOME-Web!

● MSE backend widely tested on embedded platforms (RPi, i-MX6, …)

● Infrastructure available for combination with EME

● Youtube (“desktop” and /tv) relying on MSE

● VP9 & opus

● H.264 & AAC also supported

● Playbin3 / Stream-collections support: planned

● Multi-track SourceBuffer support: planned

WebRTC

By Thibault Saunier & Alex G.
Castro

WebRTC Musical chairs

● 2015-2016: OpenWebRTC backend
● 2016: Apple open-sources their LibWebRTC

backend
● 2017: OpenWebRTC fades away, backend

removed from WebKit trunk
● 2018: WPE and WebKitGTK adopt LibWebRTC

with GStreamer platform support

Why LibWebRTC

● Mature and stable (not the API though!)
● Feature complete
● Very active development team
● Existing infrastructure in WebKit

LibWebRTC + GStreamer

● Leverage GStreamer’s hardware integration
support
● GstDeviceMonitor
● Encoders via encodebin
● Decoders via decodebin
● Communication with LibWebRTC using appsrc &

appsink
● <video> playback integration with a custom src

element

The future, webrtcbin?

● Licensing issues related with boringssl in
libwebrtc (for GPL WebKit apps like Epiphany)

● Webrtcbin would be a perfect fit for WebKit!
● Experimental WebKit webrtcbin backend written

in November 2017

https://github.com/philn/webkit/tree/gstwebrtc

https://github.com/philn/webkit/tree/gstwebrtc

Media-Capabilities

The (draft) spec

● https://wicg.github.io/media-capabilities/

● Goal: provide hints to WebApps regarding the most optimal
media encoders & decoders

● Input: description of the media format (contentType, width,
height, framerate, …)

● Output: 3 booleans:

– supported
– smooth
– powerEfficient

https://wicg.github.io/media-capabilities/

GStreamer “probing”

● New “Hardware” element metadata Classifier (=> 1.16)

● Elements may implement probing for their NULL→READY state
transition

● Possibly refine Caps templates to reflect what the hardware
supports

● WebKit GStreamer MediaCapabilities backend started

WPE/GStreamer on i-MX6
QuadPlus with Yocto

Yocto layers

● https://github.com/Igalia/meta-webkit/
● WPEBackends
● Cog browser!

● https://github.com/OSSystems/meta-gstreamer
1.0
● Updated GStreamer 1.14.x recipes

● (meta-freescale)

https://github.com/Igalia/meta-webkit/
https://github.com/OSSystems/meta-gstreamer1.0
https://github.com/OSSystems/meta-gstreamer1.0

Option 1 : Proprietary Freescale
driver

● Usable WPEBackends:
● WPEBackend-RDK/wayland (usable in Weston)
● WPEBackend-RDK/viv-imx6 (usable in framebuffer)
● WPEBackend-fdo (usable in Weston)

● GStreamer-imx plugins

Option 2 : Open-source etnaviv
driver

● Requires very recent kernel (4.19), Mesa
(18.2.2), Wayland (1.16), GStreamer (1.14.4)

● Usable WPEBackends, only working in Weston:
● WPEBackend-RDK/wayland
● WPEBackend-fdo (recommended)

● Upstream v4l2 plugin from gst-plugins-good for
hardware decoding (and encoding) support

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

