
HIGH PACKET RATES IN GSTREAMER

GStreamer Conference

22 October 2017, Prague

Tim-Philipp Müller < >tim@centricular.com

mailto:tim@centricular.com

MORE OF A CASE STUDY REALLY

HIGH PACKET RATES ?

RTP RAW VIDEO: PACKET AND DATA RATES
1080p30 I420: ~ 68k packets/second @ mtu 1400
97 MB/s ~= 0.7 Gbps

1080p30 UYVY: ~ 90k packets/second @ mtu 1400
121 MB/s ~= 0.9 Gbps

1080p50 UYVY: ~150k packets/second @ mtu 1400
201 MB/s ~= 1.6 Gbps

1080p50 RGB: ~225k packets/second @ mtu 1400
302 MB/s ~= 2.3 Gbps

RTP RAW VIDEO: PACKET AND DATA RATES
2160p30 I420: ~270k packets/second @ mtu 1400
362 MB/s ~= 2.8 Gbps
2160p30 UYVY: ~360k packets/second @ mtu 1400
482 MB/s ~= 3.8 Gbps

2160p30 I420: ~540k packets/second @ mtu 1400
724 MB/s ~= 5.7 Gbps

2160p60 UYVY: ~720k packets/second @ mtu 1400
964 MB/s ~= 7.5 Gbps

SDI-OVER-IP / SMPTE 2022-6:

720p59.94: ~135k packets/second
SDI bitrate ~= 1.5 Gbps
one packet every 7.4 uSec

2160p50 @ 10-bit
4:2:2, 10-bit 4:4:4, 12-bit 4:4:4 => 8, 12, 15 Gbps

CHALLENGES
capture
processing
sending

GOALS
Optimise for throughput + low cpu usaage

ANTI-GOALS
Optimise for lowest possible latency

CAPTURE
At very high rates, it's a

challenge to even capture
packets fast enough.

Kernel bypass / zero-copy buffers

Lots of capture threads

recvmmsg(): multiple packets with one syscall

BUT WE'RE NOT GOING TO TALK ABOUT THIS,
WELL DESCRIBED ELSEWHERE.

CAPTURE STATE OF THE ART IN
GSTREAMER

Much more pedestrian, non-zero copy

Current udpsrc does one recvmsg() per packet,
pushes out one buffer per packet received.

Bugzilla: use recvmmsg(), pushes out one buffer per
packet

Tim's HD: use recvmmsg, push out a buffer list

PROCESSING OVERHEAD
passing buffers through the pipeline
buffer allocation
accessing buffer data
processing buffer data

BUFFER PASSING
Passing buffers has a cost.

Push tens of thousands or hundreds of
thousands of buffers per second, and it

will show up in your profiling.

PAD PUSH INVOLVES:

Taking/releasing object locks multiple times.
(Cheap, atomic, uncontended)

Recursive lock (pad stream lock).
(Less cheap, at least on Linux, but not expensive).

Refs/unrefs, look-up peers etc. (Minor, but does add
up!)

Add contention to the mix and it gets much worse!
(Queues, jitterbuffer, thread boundaries)

WE HAVE A SOLUTION FOR THIS IN GSTREAMER!

GSTBUFFERLIST: WE CAN PASS N BUFFERS IN ONE
GO! \O/

Reduces data passing overhead massively.

Is backwards compatible, transparently.

Just have to make sure every element in the
pipeline maintains the buffer list for best perf.

BUFFER ALLOCATION/FREEING
single buffer: malloc/init/free for GstBuffer
buffers need memories, so same for GstMemory
could theoretically allocate buffer + memory chunk
in one go, but not implemented yet
can reuse buffers: buffer pools
easier for capture (one buffer = one packet = one
chunk/part of a chunk)

BUFFER DATA ACCESS
gst_buffer_map/unmap()
gst_memory_map/unmap()
gst_rtp_buffer_map/unmap()

atomic ops, maybe even RTP header parsing

could have a rtp/udp buffer pool that avoids
mapping/unmapping
the memory when filling (benefits
unclear/unmeasured)

GETS SILLIER WHEN
PAYLOADING/SENDING

GstBuffer can have multiple memories
so we can prepend a GstMemory
plus add a sub-memory (ALLOC) pointing into data
of a parent GstMemory

OR

alloc a new buffer, write RTP headers, memcpy
payload data (MEMCPY)

HEADS YOU LOSE. TAILS YOU LOSE.

In order to process 50,000 buffers per second we
involve

100,000-150,000 mini objects.

At least. Add some more for buffer lists and such.

Plus extra allocs for GstMetas.

Imagine how many times we map/unmap/parse even
if we didn't have to allocate anything.

BUFFER DATA PROCESSING
Let's look at the case of raw video processing.

Let's take packed UYVY or such. 1080p. 50fps.

Simples. One plane. Couple of MB per frame.

Now let's payload it into RTP packets @ MTU 1400

--> ~150k packets/second @ mtu 1400, 201 MB/s ~= 1.6
Gbps

What will the raw video payloader do? Lots of
memcpy.

Still better than submems.

MITIGATION STRATEGIES
Just use higher MTU. Might be possible in dedicated

networks.

But o�en not.

WHAT TO DO?
We want to avoid memcpy.

We want to re-use the raw video buffer.

Without allocating lots of things.

PROPOSAL TIME!
We need to decouple packets from buffers and

memories!

ENTER GSTPACKETLIST
(Better name needed!)

"GSTPACKETLIST"
Express N packets in terms of memory slices.

Can attach GstMemories to the packet list.

Each slice can refer to an attached GstMemory
or "allocated header" slce.

We know how much space we'll need for headers
and can pre-alloc a scratch area for RTP headers

when we allocate the GstPacketList.

RESULTS: 20X FASTER RTP PAYLOADING
First naive iteration.

Can be made even faster for rtp raw video by using
templating for memory slices.

OPEN ISSUE: GSTMETA
Could also be allocated inline, needs new APIs.

But not many metas are interesting here.

OPEN ISSUE: ZERO-COPY TO UDPSINK
More work needed. No mechanism with kernel yet.

WHERE'S THE CODE ?
Should land in bugzilla for discussion "soon".

Needs some cleaning up first.

QUESTIONS? COMMENTS?
OTHER IDEAS?

