

AV1: The Quest is Nearly Complete

Thomas Daede tdaede@mozilla.com
October 22, 2017

slides: https://people.xiph.org/~tdaede/gstreamer_av1_2017.pdf

Who are we?

 Joint effort by lots of companies to develop a royalty-free video codec for the web

Video format	Licensor	Codec Royalties	Codec Royalty Exemptions	Codec Royalty Annual Cap	Content Distribution Fee
HEVC	MPEG LA	■ US\$0.20 per unit	■ First 100k units each year ^[157]	■ US\$25 million	■ US\$0
	HEVC Advance	Region 1: ■ US\$0.40 (mobile) ■ US\$0.80 (PC) ■ US\$1.20 (TV) Region 2: ■ US\$0.20 (mobile) ■ US\$0.40 (PC) ■ US\$0.60 (TV) ^[158]	■ US\$25,000 each year ^[159] ■ Most software HEVC implementations distributed to consumer devices after first sale ^[160]	■ US\$40 million	For content that is free to end users: US\$0 Paid By Title Model: US\$0.025 per paid title Paid Subscriber Model: US\$0.005 per month per paid subscriber US\$2.5 million annual cap per business model US\$5 million total annual cap
	Technicolor	tailor-made agreements ^[48]			■ US\$0 ^[48]
	Velos Media ^[50]				
	others (AT&T, Microsoft, Motorola, Nokia, Cisco,) ^{[42][161][162]}				

Current Status

- Planning soft bitstream freeze by the end of the month!
- Lots of decisions made
- Some tools still have work remaining
- IPR analysis ongoing

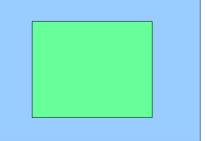
How AV1 Works

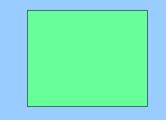
Lots of stuff!

- New high-level syntax
 - Easily parseable sequence header, frame header, tile header, etc.
- New adaptive multisymbol entropy coding
- More block sizes
 - Prediction blocks from 128x128 down to 4x4
 - Includes rectangular blocks with 1:2 and 2:1 (4x8, 8x4, etc.) as well as 1:4 and 4:1 ratios (4x16, 16x4, etc.)
 - Transforms from 32x32 down to 4x4
 - Includes 1:2 and 2:1 rectangular transforms (4x8, 8x4, ...)
- More transform types
- More references
 - Up to 7 per frame (out of a store of 8)
- More prediction modes
 - Both intra and inter
- More in-loop filtering

What I'll cover

- Some selected new features
- Containers, ecosystem, etc
- Tooling


High-level Syntax



Frame Header

Tile Group

Tile Group

High-level Syntax

- Assists in easy parsing of bitstream
- Used to define packing into containers
 - Matroska & WebM
 - ISOBMFF (MP4, DASH, HLS)
 - gstreamer's hlssink doesn't support this yet
 - RTP (WebRTC)
- Other containers can also be supported

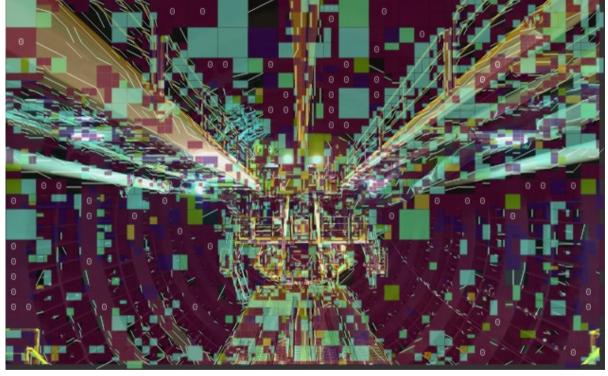
Colors and HDR

- Colorspace, color matrix, transfer function can now be encoded directly in the bitstream
 - Chroma siting and levels too

Intra Prediction

Intra Prediction

UV Mode Selection Example (https://goo.gl/6tKaB8)



CFL_PRED 17%

DC_PRED 44.36%

TM_PRED 7.98%

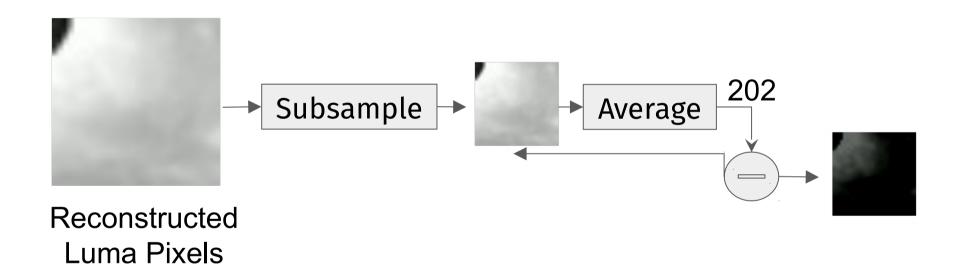
SMOOTH_PRED 4.85%

Ohashi0806shield.y4m QP = 55

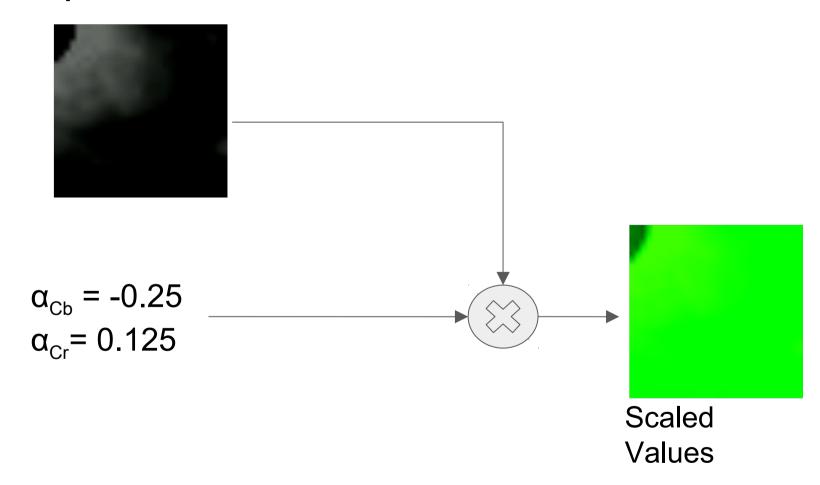
Intra Prediction Modes

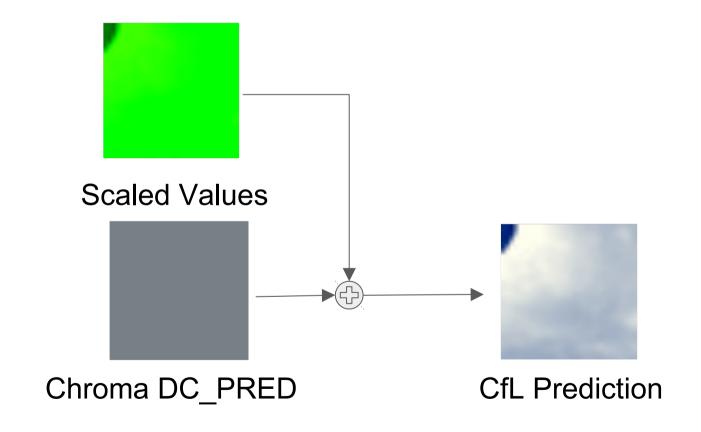
- More directional modes
 - 8 main directions plus delta for up to 56 directions
 - Not all available at smaller block sizes
- Smooth modes
 - Smoothly interpolate between values in left column (resp. above row) and last value in above row (resp. left column)
- Paeth predictor mode
- Palette mode
 - Color index map with up to 8 colors

Other Intra Prediction Enhancements



- Blend neighbor pixels before prediction
 - Strength depends on prediction angle (relative to border orientation) and block size
- Edge extension
 - If pixels from one neighboring block unavailable, extend from an adjacent neighboring block edge
- Chroma from Luma


Step 1: Compute AC Contribution


Step 2: Scale Chroma Planes

Step 3: Add Chroma DC_PRED

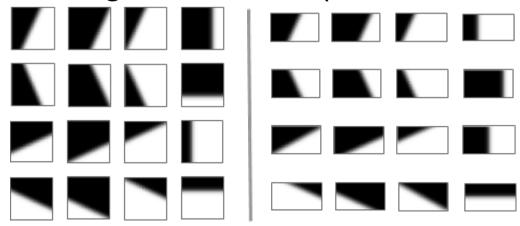
CFL in Action

Video	PSNR	PSNR HVS	SSIM	CIEDE 2000	PSNR Cb	PSNR Cr	
Average	-1.01	-0.93	-0.90	-5.74	-15.58	-9.96	
CSGO_0_120f.y4m	-0.70	-0.34	-0.01	-1.12	-12.00	27.02	
CSG0_10_120f.y4m	-1.63	-1.33	-1.42	-0.35	-7.43	0.74	
DOTA2_0_120f.y4m	-0.46	-0.46	-0.42	-2.49	-5.29	-6.42	
DOTA2_10_120f.y4m	-0.69	-0.74	-0.53	-3.14	-5.99	-5.78	
EuroTruckSimulator2_0_120f.y4m	-0.17	-0.24	-0.07	-2.73	-11.11	-10.13	
EuroTruckSimulator2_10_120f.y4m	-0.40	-0.38	-0.43	-3.45	-12.05	-10.96	
Fallout4_0_120f.y4m	-0.44	-0.29	-0.21	-4.33	-10.17	-7.49	
Fallout4_10_120f.y4m	-0.45	-0.35	-0.31	-3.57	-8.33	-5.43	
GTAV_0_120f.y4m	-1.11	-1.11	-1.01	-5.88	-15.39	-5.57	
GTAV_10_120f.y4m	-0.84	-0.94	-0.88	-8.34	-41.20	-9.69	
Hearthstone_0_120f.y4m	-1.30	-1.34	-1.27	-2.64	-4.40	-3.60	
Hearthstone_10_120f.y4m	-0.67	-0.73	-0.61	-2.43	-4.57	-4.08	
MINECRAFT_0_120f.y4m	-4.07	-3.50	-3.92	-19.68	-37.90	-29.09	
MINECRAFT_10_120f.y4m	-3.76	-3.12	-3.68	-20.69	-31.44	-25.54	
RUST_0_120f.y4m	-0.36	-0.36	-0.28	-6.31	-25.17	-21.35	
RUST_10_120f.y4m	0.25	0.25	0.31	-6.34	-23.90	-27.68	
STARCRAFT_0_120f.y4m	-0.85	-0.94	-0.87	-6.05	-12.58	-16.99	
STARCRAFT_10_120f.y4m	-1.41	-1.43	-1.38	-4.15	-6.18	-6.21	
WITCHER3_0_120f.y4m	-0.21	-0.25	-0.20	-5.41	-20.92	-21.06	

https://arewecompressedyet.com/?job=no-cfl-twitch-cpu2-60frames%402017-09-18T15%3A39%3A17.543Z&job=cfl-inter-twitch-cpu2-60frames%402017-09-18T15%3A40%3A24.181Z

Inter Prediction

Motion Vector Coding


- Each frame has a list of 7 previous frames to reference (out of a pool of 8)
- Construct list of top 4 MVs for given reference/reference pair from neighboring areas

Compound Modes

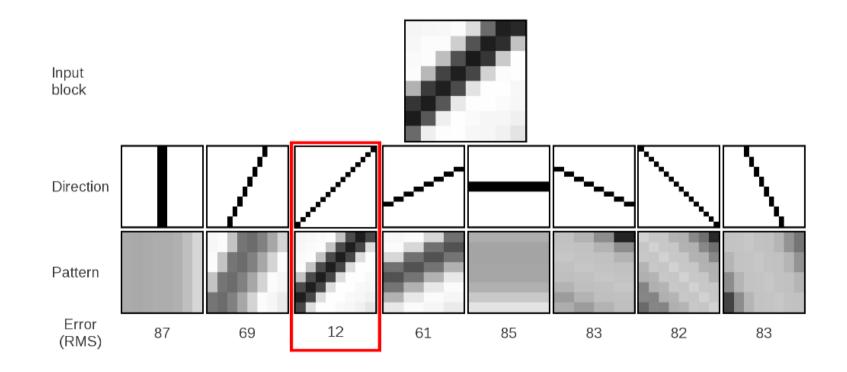
- Inter-Inter Compound Segment
 - Pixel weight depends on difference between prediction pixels
- Inter-Intra gradual weighting
 - Smoothly blends from inter to intra prediction
 - Wedge codebook (Inter-Inter or Inter-Intra)

Global Motion

- Defines up to a 6-parameter affine model for the whole frame (translation, rotation, scaling)
- Blocks can signal to either use the global motion vector or code a motion vector like normal
 - If global motion isn't used, default is 0,0

Warped Motion

- Use neighboring blocks to define same motion model within a block
 - Decomposed into two shears with limited range
 - Similar complexity to subpel interpolation


Loop Filtering

Constrained Directional Enhancement Filter

 Combines Daala's directional deringing filter and Thor's Constrained Low-Pass Filter (CLPF)

ind	lex=	0,	4:
		\neg	

тиск-о, т.						
		$\frac{1}{16}$				
		$\frac{2}{16}$				
$\frac{1}{16}$	$\frac{2}{16}$	x	$\frac{2}{16}$	$\frac{1}{16}$		
		$\frac{2}{16}$				
		$\frac{1}{16}$				

index=1, 5:

muex=1, 5.							
			$\frac{1}{16}$				
$\frac{1}{16}$		$\frac{2}{16}$					
	$\frac{2}{16}$	x	$\frac{2}{16}$				
		$\frac{2}{16}$		$\frac{1}{16}$			
	$\frac{1}{16}$						

index=2, 6:

ndex=2, o:							
$\frac{1}{16}$				$\frac{1}{16}$			
	$\frac{2}{16}$		$\frac{2}{16}$				
		x					
	$\frac{2}{16}$		$\frac{2}{16}$				
$\frac{1}{16}$				$\frac{1}{16}$			

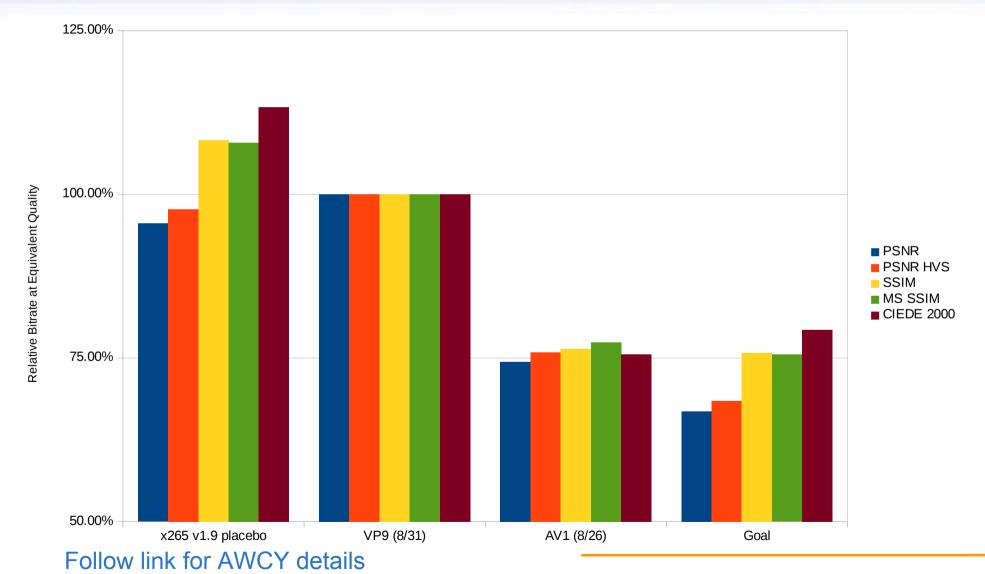
$$index=3, 7:$$

mucx-3, 7.							
	$\frac{1}{16}$						
		$\frac{2}{16}$		$\frac{1}{16}$			
	$\frac{2}{16}$	x	$\frac{2}{16}$				
$\frac{1}{16}$		$\frac{2}{16}$					
			$\frac{1}{16}$				

- Single-pass design
 - Both filters applied simultaneously
 - Fewer line buffers in hardware compared to a simple combination

Loop Restoration

- Two filter choices per superblock
 - Separable Wiener filter with explicitly coded coefficients
 - Self-guided filter
- Runs in a separate pass after CDEF
 - Showed best metrics of any approach tested
 - Uses deblocking filter output outside of superblock boundaries to minimize line buffers



Metrics

Metrics

Mozilla & The Xiph.Org Foundation

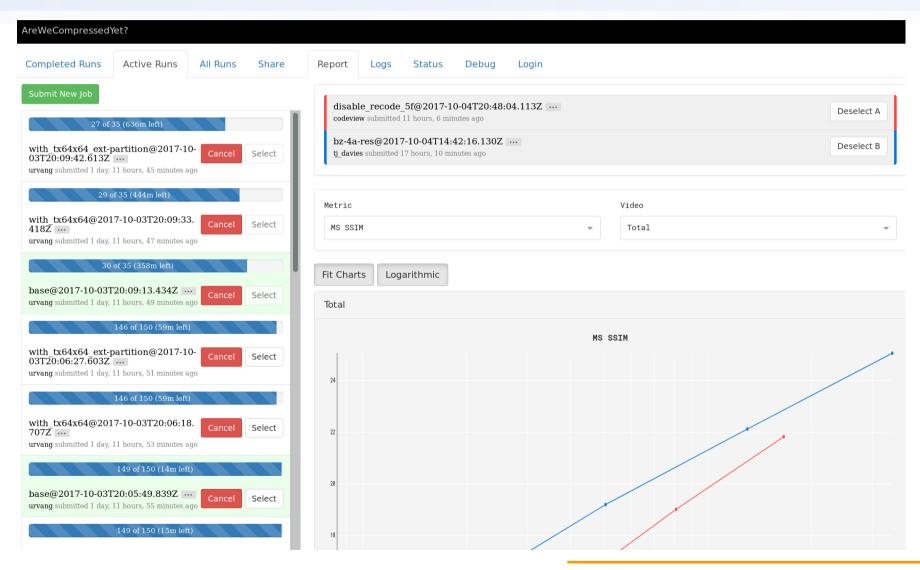
Complexity

- AV1 gets most of its compression gains by adding more tools and more options
 - More partition and transform sizes
 - More prediction modes with more parameters
 - More transform types
- Searching them all in the encoder is slow
 - About 200x slower than VP9 right now
- Decoder also slower, but not as much
 - Hard to give precise numbers in unoptimized state

Future encoder improvements

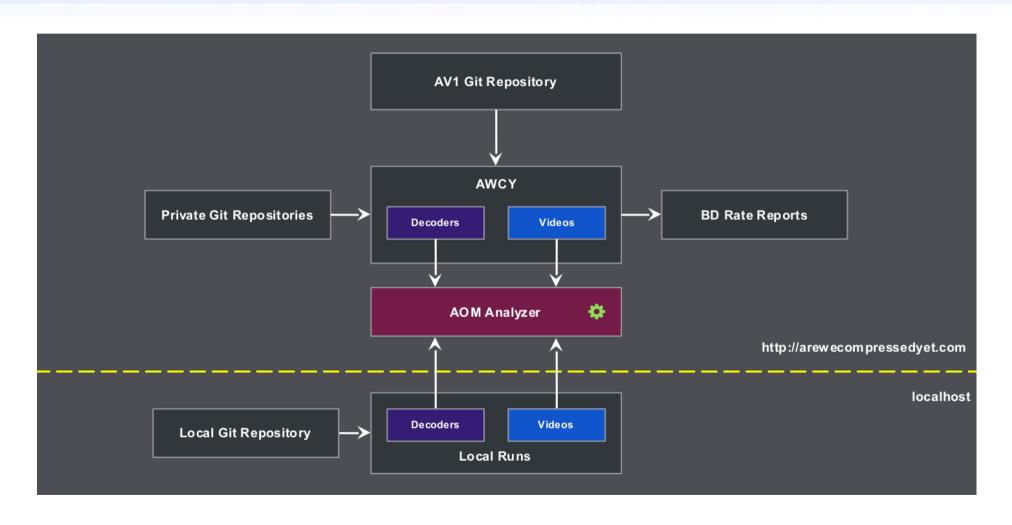
- Quantization matrices
- Better delta-QP, segments
- New experiments (dist_8x8) add better distortion functions for RDO
 - daala
 - cdef

Tools (the utility kind)

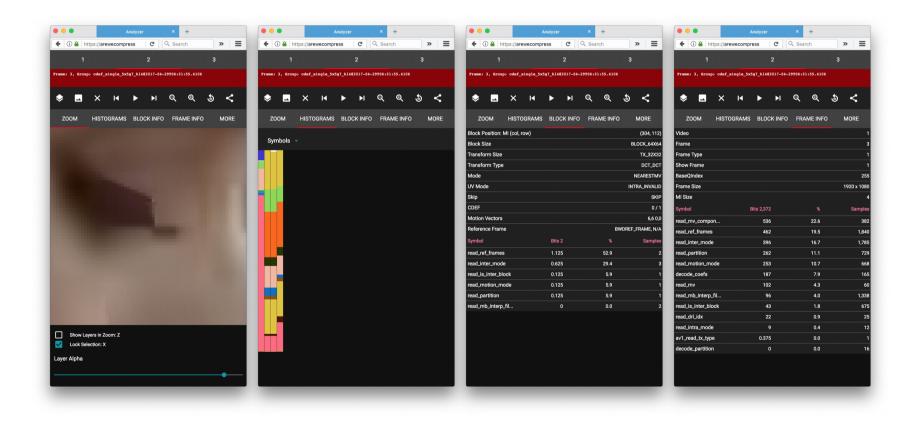


- AreWeCompressedYet
- AOM Analyzer
- Subjective viewing

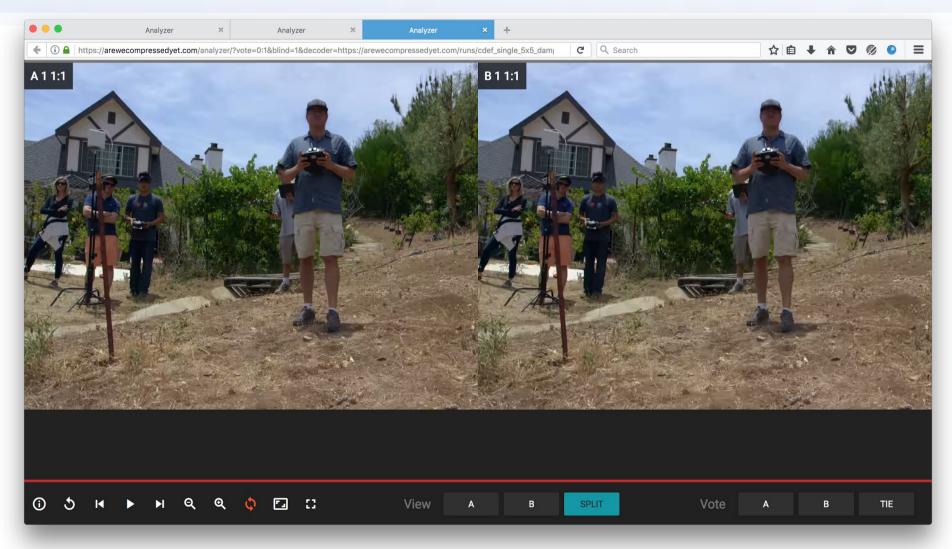
AreWeCompressedYet



AOM Analyzer



AOM Analyzer

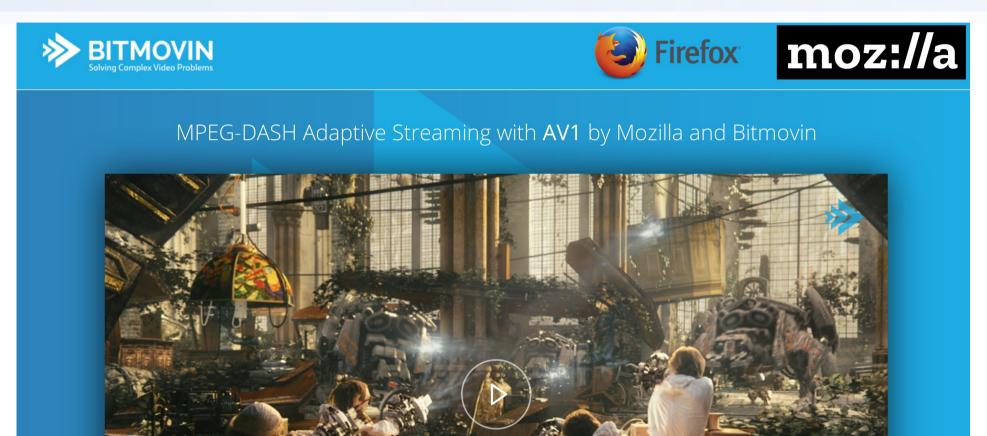


Subjective testing

Implementations

- libaom
 - Reference implementation, similar API to libvpx but not compatible
 - https://aomedia.googlesource.com/aom/
- rav1e
 - Encoder only, very fast but very low quality
 - gstreamer-rs bindings?
 - https://github.com/tdaede/rav1e

Code



- Gerrit code review
 - https://aomedia-review.googlesource.com/
- AOM Analyzer
 - https://github.com/mbebenita/aomanalyzer
- AreWeCompressedYet
 - https://github.com/tdaede/awcy
- Specification
 - https://aomedia.googlesource.com/av1-spec/

Demo

https://people.xiph.org/~tdaede/demuxed.webm

Questions?