Oxidising GStreamer

Rust out your multimedia!

GStreamer Conference 2017
22 October 2017, Prague

Sebastian 'slomo’ Droge
< sebastian@centricular.com >

gstreamer JDCentricular

mailto:sebastian@centricular.com

Introduction

What?

®

+

T

“gstreamer

What is Rust?

Type-safe, memory-safe systems programming
language

Low-level programming with a high-level look and
feel

Web, game, server/network, OS, microcontroller, ...
development

Used and backed by the industry

https://www.rust-lang.org/friends.html

https://www.rust-lang.org/friends.html

Rust is what C++ should have been

Why Rust?

Writing safe C/C++ code is hard

Let the compiler help you writing correct and fast
code

Escape hatch: unsafe

e Opt-in
© éan do everything C can
0

Feels like an high-level language,
not glorified assembly

Why should we care?

Parsing of complicated media formats

... from untrusted sources!

Multi-threading is hard

... especially in C!

Programming like it's 2017

But: Not a magic bullet

All non-trivial code has bugs

Status Last Year

GStreamer bindings

Manually written

Not integrating well with other Rust
code

Required usage of unsafe code
Diverging from GStreamer concepts
ncomplete

GStreamer crate for
writing plugins

e Manually written

e | ots of missing features

e Incomplete and difficult to
exten

A lot has happened

Let's talk about that in detail now

Writing GStreamer
Applications in Rust

New GStreamer bindings

e (mostly) autogenerated from Gl

e No unsafe code for apps

e Covering almost all of core and
others

Idiomatic Rust

(mostly)

... but still directly mapping GStreamer
APl/concepts

Objects

Semi-automatic, safe reference counting
Inheritance via traits

Compiler-enforced thread-safety

All the standard GStreamer & GODbject
API

MiniObjects

e Compiler-enforced writability / COW
e Feel like proper Rust types
= |ncl. caps/structure fields with special

types

What's missing?

GstMemory, GstAllocator, GstMeta,
GstCapsFeatures

Typefinders

GstControlBinding and related
PbUtils, other libraries incomplete

Is it useful?

Yes!

Let's look at some code
shippets

Element creation

let pipeline = gst::Pipeline: :new(None) ;

let src = gst::ElementFactory::make("filesrc", None)
.0k _or (MyError::ElementNotFound("filesrc"))?;

let dbin = gst::ElementFactory: :make ("decodebin", None)

.0k or (MyError::ElementNotFound ("decodebin")) ?;

Caps creation

Element Linking

gst::Element::1link many (&[&src, &decodebin]) ?;

elementl.link pads("src", &element2, "sink")?;

pad-added signal

let pipeline = ;
decodebin.connect pad added(move |dbin, src pad| {
let sink = gst::ElementFactory: :make (
"fakesink",
None
) .unwrap () ;
pipeline.add (&sink) ;

let sink pad = sink.get static pad("sink") .unwrap();
src pad.link(&sink pad);

sink.sync state with parent();

}) s

Buffer mapping

let mut buffer = gst::Buffer::with size(320*240*4) .unwrap () ;
{

let buffer = buffer.get mut () .unwrap();

let mut data = buffer.map writable () .unwrap();

for p in data.as mut slice().chunks mut (4) {
pl0] = b; pll] = g;
pl2] = r; p[3] = 0;

Bus & Messages

while let Some (msg) = bus.timed pop(gst::CLOCK TIME NONE) {
use gst::MessageView;

match msg.view () {
MessageView: :Eos (..) => break,
MessageView: :Error (err) => {
println! (
"Error from {}: {} ({:2})",

msg.get src().get path string(),
err.get error(),
err.get debug ()

i

break;

=> ()

AppSrc

Some Links

e Bindings: https://github.com/sdroege/gstreamer-
rs

e Examples: gstreamer-rs/examples

e Tutorials: gstreamer-rs/tutorials

https://github.com/sdroege/gstreamer-rs
https://github.com/sdroege/gstreamer-rs/tree/master/examples
https://github.com/sdroege/gstreamer-rs/tree/master/tutorials

Writing GStreamer
Plugins in Rust

Object /Element infrastructure

e Sub-classing, virtual methods

e Properties

e Manually written on top of the bindings

= To be improved

e No unsafe Rust for implementors

o GoIaI: Create elements by implementing traits
only

Existing base classes

Element

BaseSrc, BaseSink, BaseTransform

Soon hopefully: VideoDecoder

tP)anics cause error mesages on the
us

Existing elements

LV demuxer

HTTP source

File source/sink

Amazon S3 source/sink

Audio echo

Soon hopefully: (animated) GIF
decoder

Simplified traits

e Source, sink, demuxer
e Experiments for nicer base
classes

Status?

e Still in its early stages
e Ready to start getting used now

e Missing features to be added when
needed

It's the perfect time to write your next
GStreamer element in Rust

Let's look at some code
shippets

Element registration

pub fn register (plugin: &gst::Plugin) {
let type = register type (AudioEchoStatic);
gst::Element::register (plugin, "rsaudioecho", 0, type);

}

Element registration (2)

struct AudioEchoStatic;

impl ImplTypeStatic<RsBaseTransform> for AudioEchoStatic {
fn get name (&self) -> &str {
"AudioEcho"

}

fn new(&self, element: &RsBaseTransform)

-> Box<BaseTransformImpl<RsBaseTransform>> ({
AudioEcho::init (element)

fn class init(&self, klass: &mut RsBaseTransformClass)

AudioEcho::class init (klass);
)

Element class initialization

struct AudioEcho { ... }

impl AudioEcho {
fn class init(klass: &mut RsBaseTransformClass)
klass.set metadata(...);

let src pad template = gst::PadTemplate: :new
"src",
gst::PadDirection: :Src,
gst::PadPresence: :Always,
&caps,
) ;
klass.add pad template(src pad template);

klacae inaetall nronertiec (SPROPERTTREQ) -

Properties

Properties (2)

1mpl ObjectImpl<RsBaseTransform> for Audiokcho {
fn set property(&self, obj: &glib::0bject,
id: u32, value: &glib::Value) {
let prop = &PROPERTIES[id as usize];

match *prop {
Property::UInt64 ("max-delay", ..) => {
let mut settings = self.settings.lock () .unwrap/():;
settings.max delay = value.get () .unwrap()

by

Caps Handling

&self,

_element: &RsBaseTransform,

incaps: &gst::Caps,

outcaps: &gst::Caps,

-> bool {

let info = match gst audio:
None => return false,
Some (info) => info,

¥

*aalf aetate Toack () 11nwran ()

:AudioInfo::from caps (incaps)

SAme (f+ate

impl BaseTransformImpl<RsBaseTransform> for AudioEcho {
fn set caps(

{

{

Transform

Some Links

e Code: https://github.com/sdroege/gst-plugin-rs
e All plugins are inside that same repository
currently

https://github.com/sdroege/gst-plugin-rs

Write more code in Rust
... and replace C code with Rust

Get more people excited and involved
... like you!

Don't write new projects in C

Thanks
Questions?

Some useful links:
https.//www.rust-lang.org
https://github.com/sdroege/gstreamer-rs
https://github.com/sdroege/gst-plugin-rs/

https://www.rust-lang.org/
https://github.com/sdroege/gstreamer-rs
https://github.com/sdroege/gst-plugin-rs/

