
GstShark profiling: a real-life
example

Michael Grüner - michael.gruner@ridgerun.com
David Soto - david.soto@ridgerun.com

Introduction

● Michael Grüner
○ Technical Lead at RidgeRun
○ Digital signal processing and GStreamer to solve challenges involving

Audio, Video and embedded systems

● David Soto
○ Engineering Manager at RidgeRun
○ Lead team to find GStreamer solutions
○ Convert customers ideas to create real products

2

RidgeRun - where do we work?

● +12 years developing products based on Embedded Linux and
GStreamer - 100% require multimedia

● Embedded systems and limited resources - optimal
solutions

● Looking for powerful embedded platforms with coprocessors
(GPUs, DSPs and FPGAs) + GStreamer

● Provides Infrastructure

3

Location

US Company - R&D Lab in Costa Rica

4

Overview

● The need behind the tool
● Problem to solve
● Solution: GstShark
● GstShark - A Real Life Example
● Future work
● Code
● Questions

5

Motivation (1)

● No standard way to tune GStreamer pipeline - iterative
but without tools to obtain performance data

○ Element to print CPU load - where to place it?
○ Patch elements to add prints - hackish
○ Not maintainable

● GStreamer tracing subsystem now provides the hooks

6

Motivation (2)

7

Deterministic data measurement - win-win for both to find
bottlenecks

Problem

Is there an easy way to get profiling measurements from the
pipeline to identify bottlenecks and to get a more stable
and optimized design?

8

Solution: GstShark

● Take pipeline profiling data and used it on a single,
standard tool called GstShark

○ Make better decisions

Demonstrated today on NVIDIA Tegra X1

9

Tegra X1

● Embedded system created by NVIDIA
● 6x1080p30 MIPI CSI Cameras or single up to 4K@60fps
● Hardware encoders/decoders for H264, H265 and VP8
● Maxwell GPU with 256 cuda cores - RidgeRun using with

GStreamer

10

GstShark - What is it?

● Profiling and benchmarking tool for GStreamer pipelines.
● Front-end for GStreamer's tracing subsystem.

11

GstShark - GStreamer's tracing subsystem

● API added on release 1.7.1 around 2015 (thanks Stefan)
● Install callbacks on predefined "hooks" - strategic

pieces of code, i.e buffer push
● low-level measurements translated to “tracers”

○ Processing time
○ Latency
○ Bitrate, etc

● Run time linked
● Activated by environment variables

12

GstShark

● Open Source project developed by RidgeRun
● Adds a set of tracers for high level measurements
● Tracers chosen by customers (room for more!)

13

GstShark - New GStreamer Tracers

● Bitrate
● Framerate
● CPU usage
● Queue level
● Schedule time
● Inter-latency
● Processing time
● Graphic

14

GstShark - Bitrate Tracer

● Bits per second that pass through every pad in the
pipeline

● Validate encoders configuration (compression)

15

Great way to verify adaptive bitrate
streaming is working as expected

GstShark - Framerate Tracer

● Frames passing per second
through every pad in the
pipeline

○ Scheduling issues, bottlenecks and
stability problems

16

Now you have a way to attack jittery
video

GstShark - CPU Usage Tracer

● Prints once every second the
CPU usage while pipeline is
running.

○ Per core - all system load

17

Identify dropped frames caused by
another process hogging the processor

GstShark - Queue Level Tracer

● Amount of data currently held by
pipeline queues

○ number of buffers, bytes or even time
○ Should be constant - not increasing

(bottleneck)

18

Latency tuning is finding unnecessary
buffer queueing

GstShark - Schedule Time Tracer

● Time between two consecutive
buffers in a pad

○ 30fps live pipeline, should be 33ms
○ It is different to processing time
○ Think on queues: 33ms schedule time

but higher processing time.

19

Identify buffer drops and pipeline hogs

GstShark - Inter-Latency Tracer

● Time it takes for a buffer to travel
from a source element to other
elements

○ overall latency: inter-latency from 1st
source to last element

● Reports latency in different parts
of the pipeline (data buffering)

20

Great way to measure how each element
contributes to pipeline latency

GstShark - Processing Time Tracer

● Time an element takes to
process a single buffer

○ Tricky with tee or demux
○ Valid only for single input/output

elements

21

Identify elements needing tuning or
hardware acceleration

GstShark - Graphic Tracer

● Pop-up a window with the pipeline graph
○ Shortcut for "dump dot file" utility
○ Opens a window instead of file creation

22

GstShark - Tracer outputs

● GStreamer's debug - most intuitive way
○ Activate desired tracers
○ Enable GST_TRACER debug category - separated by semicolon

● CTF (Common Trace Format) file
○ Directory with date and time with the traces of the latest session
○ Can be read by Eclipse or babeltrace for more analysis

● GNU/Octave scripts to plot the data (provided)

23

GstShark - A Real Life example

● WebRTC Streaming Pipeline
○ VP8 Encoder
○ Full HD (1080P)
○ 30 FPS
○ < 200ms latency

24

GstShark - Iteration 1

25

GstShark - Iteration 1

26

gst-launch-1.0 webrtcbin rtcp-mux=true start-call=false signaler::user-channel=ridgerun name=web
nvcamerasrc ! "video/x-raw(memory:NVMM),width=1920,height=1080" ! nvvidconv
flip-method=rotate-180 ! cuda ! omxvp8enc ! rtpvp8pay ! web.video_sink web.video_src !
rtpvp8depay ! omxvp8dec ! nvoverlaysink

GstShark - Iteration 1

 7.224

- 5.833

 1.391

27

GstShark - Iteration 1

● VP8 Encoder ✓
● Full HD ✓
● 30 FPS ✕
● 200 ms latency ✕

28

GstShark - Iteration 1

29

GstShark - Iteration 1

30

GstShark - Iteration 1

31

GstShark - Iteration 1

32

GstShark - Iteration 1

33

GstShark - Iteration 2

34

GstShark - Iteration 2

35

gst-launch-1.0 webrtcbin rtcp-mux=true start-call=false signaler::user-channel=ridgerun name=web
nvcamerasrc ! "video/x-raw(memory:NVMM),width=1920,height=1080" ! nvvidconv
flip-method=rotate-180 ! queue ! cuda ! omxvp8enc ! rtpvp8pay ! web.video_sink web.video_src !
rtpvp8depay ! omxvp8dec ! nvoverlaysink

GstShark - Iteration 2

36

GstShark - Iteration 2

 4777

- 4429

 348

37

GstShark - Iteration 2

● VP8 Encoder ✓
● Full HD ✓
● 30 FPS ✕
● 200 ms latency ✕

38

GstShark - Iteration 2

39

GstShark - Iteration 2

40

GstShark - Iteration 2

41

The gap accounts for
the element latency

Overall pipe latency

GstShark - Iteration 2

42

...

GstShark - Iteration 3

43

GstShark - Iteration 3

44

gst-launch-1.0 webrtcbin rtcp-mux=true start-call=false signaler::user-channel=ridgerun name=web
latency=0 nvcamerasrc ! "video/x-raw(memory:NVMM),width=1920,height=1080" ! nvvidconv
flip-method=rotate-180 ! queue ! cuda ! omxvp8enc ! rtpvp8pay ! web.video_sink web.video_src !
rtpvp8depay ! omxvp8dec ! nvoverlaysink

GstShark - Iteration 3

45

GstShark - Iteration 3

 332

- 112

 220

46

GstShark - Iteration 3

● VP8 Encoder ✓
● Full HD ✓
● 30 FPS ✓
● 200 ms latency ✕

47

GstShark - Iteration 3

48

CUDA/Queue
latency

GstShark - Iteration 3

49

GstShark - Iteration 3

50

Suspicious spike

GstShark - Iteration 3

51

GstShark - Iteration 3

52

Suspicious spike?

GstShark - Iteration 3

53

GstShark - Iteration 3

54

Buffers are queued
during startup

GstShark - Iteration 4

55

GstShark - Iteration 4

56

gst-launch-1.0 webrtcbin rtcp-mux=true start-call=false signaler::user-channel=ridgerun name=web
latency=0 nvcamerasrc ! "video/x-raw(memory:NVMM),width=1920,height=1080" ! nvvidconv
flip-method=rotate-180 ! queue max-size-buffers=1 leaky=2 ! cuda ! omxvp8enc ! rtpvp8pay !
web.video_sink web.video_src ! rtpvp8depay ! omxvp8dec ! nvoverlaysink

GstShark - Iteration 4

57

GstShark - A Real Life example

 764

- 590

 174

58

GstShark - Iteration 4

● VP8 Encoder ✓
● Full HD ✓
● 30 FPS ✓
● 200 ms latency ✓

59

GstShark - Iteration 4

60

GstShark - Iteration 4

61

GstShark - Iteration 4

62

GstShark - Iteration 4

63

GstShark - Future development (1)

● HW specific tracers:
○ NVIDIA (GPU), Xilinx (FPGA), TI (DSP) and NXP (i.MX6 mem bus

utilization) profiling tools usage from tracers
○ Single time reference for debug data and buffers
○ Homogeneous interface

● CPU Tracer improvements
○ Print usage of pipeline only
○ Usage per thread?

64

GstShark - Future development (2)

● Pass parameters to the tracers currently enabled
○ Supported on GStreamer but not GstShark
○ Do not print info for every pad but ability to select - reduce

overhead

● Graphical front-end
○ Filter data
○ Overlap plot to find tendencies
○ Mark outliers
○ Real time plot

65

Code location and documentation

● GstShark is open source:

https://github.com/RidgeRun/gst-shark

https://developer.ridgerun.com/wiki/index.php?title=GstShark

66

Questions?

67

support@ridgerun.com

68

Thank you!

