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Who Am I

● Australian
● Work - Centricular
● Graphics – OpenGL, Vulkan
● Multimedia
● WebRTC



  

WebRTC Experience

● WebRTC.org
– Integrating GStreamer-based hardware decoders
– Wrapping WebRTC.org in GStreamer

● OpenWebRTC hardware acceleration
● GStreamer-based implementation



  

Background – WebRTC

● What are computers used for?
● Provide tools for developers to build web sites that meet 

these needs
● Without plugins/extensions

– <video> html5 tag
– <audio> html5 tag
– Geolocation
– WebGL
– Canvas



  

Enter WebRTC

● Real-time communication inside a web browser
● Tools for building the Skype's, Polycom's, Cisco Jabber's 

Google Chat/Hangouts/Duo

https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/ 

https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/


  

WebRTC limitations

● Draft specifcation
● 1:1 connection between two peers
● Some implementation required

https://www.w3.org/TR/webrtc/ https://tools.ietf.org/wg/rtcweb/

https://www.w3.org/TR/webrtc/
https://tools.ietf.org/wg/rtcweb/


  

WebRTC multi-party

● Three main models
– Mesh – appear.in
– SFU – Talky, SwitchRTC
– MCU - BlueJeans



  

WebRTC - Mesh

● Participants send/receive to each other participant
● Not scalable for many (5-10+) users
● Cheap for the provider
● Expensive for the user
● Mixed locally



  

WebRTC – MCU – Multipoint Control Unit

● Central server mixes 1-n streams from the participants
● Participants send/receive a single stream
● High complexity for the provider
● Mixing is defned by the server
● Cheap for the user

Server



  

WebRTC – SFU – Selective Forwarding Unit

● Central server routes data between multiple peers
● A Participant sends 1 stream, received n-1 streams
● Cheaper than MCU for the provider
● Semi-expensive for the user
● Mixed locally

Server



  

WebRTC – Complexity table

n = No of participants Mesh SFU MCU

Provider Bandwidth 0 O(n2) O(n)

Single User Bandwidth O(n) O(n) O(1)

All User Bandwidth O(n!) O(n2) O(n)

Provider processing 0 O(n) O(n)-O(n!)

User Processing O(n) O(n) O(1)



  

Goals and Motivation

● Support the gateway/SFU and Mesh/MCU use case
● Hardware Acceleration
● Implement WebRTC API sanely
● Embedded devices
● Embedded devices/Harware Acceleration



  

Existing GStreamer WebRTC Solutions

● OpenWebRTC - https://www.openwebrtc.org/
● Kurento - https://www.kurento.org/
● Custom Janus Plugin

https://www.openwebrtc.org/
https://www.kurento.org/


  

OpenWebRTC

● Ericsson Project
● Proof of Concept
● Does not support SFU
● Does have hardware accelerated encoder/decoder for 

Android/iOS
● Requires using a custom API



  

Kurento

● Focus is on server applications
● Does not easily support hardware encoders/decoders
● Requires using a custom API



  

Other Noteable Implementations

● WebRTC.org
● Janus
● SIP gateways galore



  

WebRTC.org

● Build system woes (and changes)
● Does not support SFU
● No well-defned hardware fast-paths
● Integrating custom/hardware encoders/decoders is a pain
● Only zero-copy path are custom decoder-sink pairs
● Everything else requires raw media



  

Janus

● Generic WebRTC gateway server
● Core deals with signalling
● Pugins generate/consume media
● Requires a custom API



  

Janus – Streaming Plugin

● Only one way media communication into Janus
● No feedback on streaming bitrate/backlog
● Double the data through the kernel.
● Currently only static confguration.
● Example - 

https://planb.nicecupoftea.org/2015/07/28/hackspacehat-p
art-1-webrtc-janus-and-gstreamer/

https://planb.nicecupoftea.org/2015/07/28/hackspacehat-part-1-webrtc-janus-and-gstreamer/
https://planb.nicecupoftea.org/2015/07/28/hackspacehat-part-1-webrtc-janus-and-gstreamer/


  

Hmm

● Nothing quite fts!
● Let’s build something!



  

What Components Do We Need?

● RTP – rtpbin element
● ICE – libnice
● DTLS/SRTP/SCTP – dtlssrtpenc/dec elements
● An API – W3C PeerConnection API
● SDP Parsing Generation



  

GstPromise - Promises/Futures

● Object for Promise/Future-like functionality
● Diferent states

– PENDING
– INTERRUPTED
– REPLIED
– EXPIRED

● Attach callback for when a reply is made
● https://github.com/ystreet/gstreamer/tree/promise  

https://github.com/ystreet/gstreamer/tree/promise


  

Enter webrtcbin

● TADA!!
● https://github.com/ystreet/gst-plugins-bad/tree/webrtc 

sink_0

webrtcbin

sink_%u src_%u

src_0

https://github.com/ystreet/gst-plugins-bad/tree/webrtc


  

webrtcbin – High Level Goals

● Stick as close as possible to the W3C PeerConnection API
● Gateway/full stack use case
● A dynamic number of streams
● Provide connection statistics



  

webrtcbin – Low Level Goals

● RTCP muxing
● RTX - Retransmission
● FEC – Forward Error Correction
● RTP bundling
● LS groups
● Trickle ICE



  

webrtcbin – Details

● SDP's are the signalling data exchange format
– Constructed from connected sink pads and caps

● Trickle ICE candidates passed to application
● Request sink pads sending application/x-rtp
● Sometimes src pads receiving application/x-rtp



  

webrtcbin – Examples

● one-way
● bidirectional
● A/V bidirectional



  

webrtcbin – Demo!

● Localhost
● A/V bidirectional



  

What Next? – Low Level

● FEC – Forward Error Correction
● RTX - Retransmissiion
● RTP bundling
● LS groups
● Statistics
● Fix bugs



  

What Next? – High Level

● Reconfguration of streams
● Stream selection - GstStreamCollection
● Adaptive bitrate
● Full stack implementation/user



  

Thanks!

● ystreet00 in #gstreamer on freenode
● @ystreet00 on twitter

https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/ - CC BY 3.0
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