

Gstreamer WebRTC
Matthew Waters (ystreet00)
GStreamer conference 2017

21st October 2017

Who Am I

● Australian
● Work - Centricular
● Graphics – OpenGL, Vulkan
● Multimedia
● WebRTC

WebRTC Experience

● WebRTC.org
– Integrating GStreamer-based hardware decoders
– Wrapping WebRTC.org in GStreamer

● OpenWebRTC hardware acceleration
● GStreamer-based implementation

Background – WebRTC

● What are computers used for?
● Provide tools for developers to build web sites that meet

these needs
● Without plugins/extensions

– <video> html5 tag
– <audio> html5 tag
– Geolocation
– WebGL
– Canvas

Enter WebRTC

● Real-time communication inside a web browser
● Tools for building the Skype's, Polycom's, Cisco Jabber's

Google Chat/Hangouts/Duo

https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/

https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/

WebRTC limitations

● Draft specifcation
● 1:1 connection between two peers
● Some implementation required

https://www.w3.org/TR/webrtc/ https://tools.ietf.org/wg/rtcweb/

https://www.w3.org/TR/webrtc/
https://tools.ietf.org/wg/rtcweb/

WebRTC multi-party

● Three main models
– Mesh – appear.in
– SFU – Talky, SwitchRTC
– MCU - BlueJeans

WebRTC - Mesh

● Participants send/receive to each other participant
● Not scalable for many (5-10+) users
● Cheap for the provider
● Expensive for the user
● Mixed locally

WebRTC – MCU – Multipoint Control Unit

● Central server mixes 1-n streams from the participants
● Participants send/receive a single stream
● High complexity for the provider
● Mixing is defned by the server
● Cheap for the user

Server

WebRTC – SFU – Selective Forwarding Unit

● Central server routes data between multiple peers
● A Participant sends 1 stream, received n-1 streams
● Cheaper than MCU for the provider
● Semi-expensive for the user
● Mixed locally

Server

WebRTC – Complexity table

n = No of participants Mesh SFU MCU

Provider Bandwidth 0 O(n2) O(n)

Single User Bandwidth O(n) O(n) O(1)

All User Bandwidth O(n!) O(n2) O(n)

Provider processing 0 O(n) O(n)-O(n!)

User Processing O(n) O(n) O(1)

Goals and Motivation

● Support the gateway/SFU and Mesh/MCU use case
● Hardware Acceleration
● Implement WebRTC API sanely
● Embedded devices
● Embedded devices/Harware Acceleration

Existing GStreamer WebRTC Solutions

● OpenWebRTC - https://www.openwebrtc.org/
● Kurento - https://www.kurento.org/
● Custom Janus Plugin

https://www.openwebrtc.org/
https://www.kurento.org/

OpenWebRTC

● Ericsson Project
● Proof of Concept
● Does not support SFU
● Does have hardware accelerated encoder/decoder for

Android/iOS
● Requires using a custom API

Kurento

● Focus is on server applications
● Does not easily support hardware encoders/decoders
● Requires using a custom API

Other Noteable Implementations

● WebRTC.org
● Janus
● SIP gateways galore

WebRTC.org

● Build system woes (and changes)
● Does not support SFU
● No well-defned hardware fast-paths
● Integrating custom/hardware encoders/decoders is a pain
● Only zero-copy path are custom decoder-sink pairs
● Everything else requires raw media

Janus

● Generic WebRTC gateway server
● Core deals with signalling
● Pugins generate/consume media
● Requires a custom API

Janus – Streaming Plugin

● Only one way media communication into Janus
● No feedback on streaming bitrate/backlog
● Double the data through the kernel.
● Currently only static confguration.
● Example -

https://planb.nicecupoftea.org/2015/07/28/hackspacehat-p
art-1-webrtc-janus-and-gstreamer/

https://planb.nicecupoftea.org/2015/07/28/hackspacehat-part-1-webrtc-janus-and-gstreamer/
https://planb.nicecupoftea.org/2015/07/28/hackspacehat-part-1-webrtc-janus-and-gstreamer/

Hmm

● Nothing quite fts!
● Let’s build something!

What Components Do We Need?

● RTP – rtpbin element
● ICE – libnice
● DTLS/SRTP/SCTP – dtlssrtpenc/dec elements
● An API – W3C PeerConnection API
● SDP Parsing Generation

GstPromise - Promises/Futures

● Object for Promise/Future-like functionality
● Diferent states

– PENDING
– INTERRUPTED
– REPLIED
– EXPIRED

● Attach callback for when a reply is made
● https://github.com/ystreet/gstreamer/tree/promise

https://github.com/ystreet/gstreamer/tree/promise

Enter webrtcbin

● TADA!!
● https://github.com/ystreet/gst-plugins-bad/tree/webrtc

sink_0

webrtcbin

sink_%u src_%u

src_0

https://github.com/ystreet/gst-plugins-bad/tree/webrtc

webrtcbin – High Level Goals

● Stick as close as possible to the W3C PeerConnection API
● Gateway/full stack use case
● A dynamic number of streams
● Provide connection statistics

webrtcbin – Low Level Goals

● RTCP muxing
● RTX - Retransmission
● FEC – Forward Error Correction
● RTP bundling
● LS groups
● Trickle ICE

webrtcbin – Details

● SDP's are the signalling data exchange format
– Constructed from connected sink pads and caps

● Trickle ICE candidates passed to application
● Request sink pads sending application/x-rtp
● Sometimes src pads receiving application/x-rtp

webrtcbin – Examples

● one-way
● bidirectional
● A/V bidirectional

webrtcbin – Demo!

● Localhost
● A/V bidirectional

What Next? – Low Level

● FEC – Forward Error Correction
● RTX - Retransmissiion
● RTP bundling
● LS groups
● Statistics
● Fix bugs

What Next? – High Level

● Reconfguration of streams
● Stream selection - GstStreamCollection
● Adaptive bitrate
● Full stack implementation/user

Thanks!

● ystreet00 in #gstreamer on freenode
● @ystreet00 on twitter

https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/ - CC BY 3.0
https://www.w3.org/Icons/WWW/w3c_home_nb-v.svg - https://www.w3.org/Consortium/Legal/logo-usage-20000308

https://ietf.org/logo/ietf-logo.jpg - http://trustee.ietf.org/ietf-logo-acronym.html
https://commons.wikimedia.org/wiki/File:Blue_computer_icon.svg - CC BY-SA 3.0

https://openclipart.org/download/32365/server.svg - CC0 1.0

https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/
https://www.w3.org/Icons/WWW/w3c_home_nb-v.svg
https://www.w3.org/Consortium/Legal/logo-usage-20000308
https://ietf.org/logo/ietf-logo.jpg
http://trustee.ietf.org/ietf-logo-acronym.html
https://commons.wikimedia.org/wiki/File:Blue_computer_icon.svg
https://openclipart.org/download/32365/server.svg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

