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Application mobility

Paradigm where users can move parts of their running applications
across multiple heterogeneous devices in a seamless manner.
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Challenges of adaptive multimedia presentations

I Adaptive systems adapt a subset of scenarios in application
mobility

I Fidelity adaptation
I Modality adaptation
I Modality selection
I Content adaptation
I Retargeting



DAMPAT: Dynamic Adaptation of Multimedia Presentations
in Application Mobility

I Context-aware runtime adaptive system
I Adapts multimedia pipelines

I Adopts Dynamic Software Product Lines (DSPL)
I Possible con�gurations are seen as variability management

problem
I Utility functions to �nd best variant
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Utility functions

I Best is the variant that produces the highest utility according
to the current contextual situation

I Each component (GStreamer element) provides a utility

I If we want to get the best variant, we have to compare all
possible pipeline con�gurations



Challenges of autonomously creating all possible pipeline
con�gurations

I Control of combinatorial growth due to compositional and
parameterization variability

I Pipeline components
I Components properties

I Control valid path combinations

I Selection of best variant

Υ(u, g) =
l∑

j=1

ut(u.pj , g .pj) · u.pj .we (1)



Architectural constraints

I Allows developers to introduce architectural design knowledge

I Enforces directed graphs, and they avoid unnecessary checks of
connectors compatibility

Levels of functional stages
pre-processing retargeter post processing

source handler Input Format Handler color adaptation type Filters Output Sink Handler
space Format Handler

converter Format Handler

protocol source parser demuxer decoder video modality content �delity stream mixer encoder muxer payload session sink
handler handler converter adaptation adaptation adaptation selector encoder manager handler

muxer



Valid path combinations

s1 s2 s3 s4 s5 s6 s7

w1': audio

w2: video

w1 : audio

Binary Re�ected Gray Code (BRGC)
Bit strings 000 001 011 010 110 111 101 100
Subsets {0} {w2} {w ′

1
,w2} {w ′

1
} {w1,w

′
1
} {w1,w

′
1
,w2} {w1,w2} {w1}

Modality maudio = 0 maudio = 0 maudio = 1 maudio = 1 maudio = 2 maudio = 2 maudio = 1 maudio = 1
counter mvideo = 0 mvideo = 1 mvideo = 1 mvideo = 0 mvideo = 0 mvideo = 1 mvideo = 1 mvideo = 0

Subgraph ∈ G ′ Not valid g1 g2 g3 Not valid Not valid g4 g5



Scalability when linking GStreamer pipeline elements

I Unpredictability of time needed for capability negotiation

I No registry to easily know which elements need hardware
instantiation

I query-caps and accept-caps

I Recursion and no proper implementation of accept-caps
handler (due to CAPS event)



Query measurements

I capsnego.c

I audiotestsrc, adder, volume, audioconvert, identity
I videotestsrc, videomixer, videoscale, videoconvert,

identity

I GST_TRACERS

I gsttracer-negotiation-analyzer.py

Table: Queries when building similar pipelines

Number Modality Total Repeated Response
of comp. queries queries time (ms)

5 audio 16 1 2.3

455 audio 104 041 70 252 28 953.05

5 video 21 3 20.71

455 video 2 721 453 1 782.815



Queries with/without playbin3

I audio: Ogg/Vorbis

I video: WebM/Vorbis/VP8

Input Elem. Total Repeated Queries
queries queries response

time (ms)

playbin audio 17 111 28 50
audio 17 107 8 43
playbin video 27 208 112 250
video 27 207 6 161



Work in progress

I Find out how to estimate in a more predictable manner the
time needed for building pipelines
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