
DAMPAT: Dynamic Adaptation of Multimedia
Presentations for Application Mobility

Francisco Velázquez, Frank Eliassen

October 21, 2017



Application mobility

Paradigm where users can move parts of their running applications
across multiple heterogeneous devices in a seamless manner.



Challenges

Application layer

TRAMP

Realtime

Application

Mobility

Platform

Device layer

SOCKMAN Distributed Share Memory

Multimedia Application

DAMPAT

Negotiation protocol

GstSeamcrop

Operating system and hardware



Challenges of adaptive multimedia presentations

I Adaptive systems adapt a subset of scenarios in application
mobility

I Fidelity adaptation
I Modality adaptation
I Modality selection
I Content adaptation
I Retargeting



DAMPAT: Dynamic Adaptation of Multimedia Presentations
in Application Mobility

I Context-aware runtime adaptive system
I Adapts multimedia pipelines

I Adopts Dynamic Software Product Lines (DSPL)
I Possible con�gurations are seen as variability management

problem
I Utility functions to �nd best variant



Monitoring, Analysis, Planning, and Execution (MAPE)
adaptation loop

Autonomic manager

wd

Managed Pipeline



Utility functions

I Best is the variant that produces the highest utility according
to the current contextual situation

I Each component (GStreamer element) provides a utility

I If we want to get the best variant, we have to compare all
possible pipeline con�gurations



Challenges of autonomously creating all possible pipeline
con�gurations

I Control of combinatorial growth due to compositional and
parameterization variability

I Pipeline components
I Components properties

I Control valid path combinations

I Selection of best variant

Υ(u, g) =
l∑

j=1

ut(u.pj , g .pj) · u.pj .we (1)



Architectural constraints

I Allows developers to introduce architectural design knowledge

I Enforces directed graphs, and they avoid unnecessary checks of
connectors compatibility

Levels of functional stages
pre-processing retargeter post processing

source handler Input Format Handler color adaptation type Filters Output Sink Handler
space Format Handler

converter Format Handler

protocol source parser demuxer decoder video modality content �delity stream mixer encoder muxer payload session sink
handler handler converter adaptation adaptation adaptation selector encoder manager handler

muxer



Valid path combinations

s1 s2 s3 s4 s5 s6 s7

w1': audio

w2: video

w1 : audio

Binary Re�ected Gray Code (BRGC)
Bit strings 000 001 011 010 110 111 101 100
Subsets {0} {w2} {w ′

1
,w2} {w ′

1
} {w1,w

′
1
} {w1,w

′
1
,w2} {w1,w2} {w1}

Modality maudio = 0 maudio = 0 maudio = 1 maudio = 1 maudio = 2 maudio = 2 maudio = 1 maudio = 1
counter mvideo = 0 mvideo = 1 mvideo = 1 mvideo = 0 mvideo = 0 mvideo = 1 mvideo = 1 mvideo = 0

Subgraph ∈ G ′ Not valid g1 g2 g3 Not valid Not valid g4 g5



Scalability when linking GStreamer pipeline elements

I Unpredictability of time needed for capability negotiation

I No registry to easily know which elements need hardware
instantiation

I query-caps and accept-caps

I Recursion and no proper implementation of accept-caps
handler (due to CAPS event)



Query measurements

I capsnego.c

I audiotestsrc, adder, volume, audioconvert, identity
I videotestsrc, videomixer, videoscale, videoconvert,

identity

I GST_TRACERS

I gsttracer-negotiation-analyzer.py

Table: Queries when building similar pipelines

Number Modality Total Repeated Response
of comp. queries queries time (ms)

5 audio 16 1 2.3

455 audio 104 041 70 252 28 953.05

5 video 21 3 20.71

455 video 2 721 453 1 782.815



Queries with/without playbin3

I audio: Ogg/Vorbis

I video: WebM/Vorbis/VP8

Input Elem. Total Repeated Queries
queries queries response

time (ms)

playbin audio 17 111 28 50
audio 17 107 8 43
playbin video 27 208 112 250
video 27 207 6 161



Work in progress

I Find out how to estimate in a more predictable manner the
time needed for building pipelines


	Introduction
	DAMPAT: Dynamic Adaptation of Multimedia Presentations in Application Mobility
	Work in progress

