
GStreamer Daemon - Building a
media server under 30min
Michael Grüner - michael.gruner@ridgerun.com

David Soto - david.soto@ridgerun.com

Introduction

● Michael Grüner
○ Technical Lead at RidgeRun
○ Digital signal processing and GStreamer to solve challenges involving

Audio, Video and embedded systems

● David Soto
○ Engineering Manager at RidgeRun
○ Lead team to find GStreamer solutions
○ Convert customers ideas to create real products

2

RidgeRun - where do we work?

● +12 years developing products based on Embedded Linux and
GStreamer - 100% require multimedia

● Embedded systems and limited resources - optimal
solutions

● Looking for powerful embedded platforms with coprocessors
(GPUs, DSPs and FPGAs) + GStreamer

● Provides Infrastructure

3

Location

US Company - R&D Lab in Costa Rica

4

Overview

● Why GStreamer Daemon? Motivation
● Problem to solve
● Solution: GSTD and interpipes
● Media Server - requirements and implementation
● Future work
● Code
● Questions

5

Motivation (1)

● Reduce time to market and cost
● No time to learn GStreamer API
● Quick prototypes - Risk Mitigation
● Custom requirements - Core implementations always the

same but different pipelines (code replication)
● Automatic bins not enough - to maximize performance you

need a tuned pipeline
● Hard to deal with dynamic pipelines(previous talks)

6

Motivation (2)

● SoC vendors (Xilinx, NVIDIA or TI) require full pipeline
control (states and properties) to validate their
elements (not well written) - gst-launch is not enough

■ Resources freed? Do I need to code my own application?

● Feedback:

 “There is not an easy way (ala gst-launch) to create and control your pipeline and
to know if the elements are stable or not without having to code a media server
application”

7

Problem

Is there an easy way to create a dynamic media server with
full pipeline control without being a GStreamer expert?

8

Solution: GSTD + interpipes

Media server with dynamic pipelines using GStreamer Daemon
(GSTD) and interpipes

Demonstrated today on NVIDIA Tegra X1

9

Tegra X1

● Embedded system created by NVIDIA
● 6x1080p30 MIPI CSI Cameras or single 4K@60fps
● Hardware encoders/decoders for H264, H265 and VP8
● Maxwell GPU with 256 CUDA cores - RidgeRun enables via

GStreamer

10

GStreamer Daemon (1)

● Multi-threaded Linux Daemon handling the GStreamer
framework underneath (C)

● Audio, Video, Metadata, etc
● TCP connection messages as IPC
● Controller can be any process

(GUI) on any language
(python, C, C++)

11

GStreamer Daemon (2)

● C Library handling IPC
● gst-client cmd line application

○ gst-launch like

● No GObject, GLib, main loop
● No GStreamer API knowledge

12

GSTD - Pipeline creation

Capture + Display pipeline through the command line

Similar to gst-launch

13

command name pipeline

JSON IPC
response

GSTD - Pipeline state control

Change state to NULL, READY, PAUSED and PLAYING from the
command line.

14

GSTD - Properties control

You can change dynamic properties on run time: bitrate?

15

command pipeline
name

element
name

property
name

value

GSTD - Multiple pipelines

You can create several pipelines and control them
individually

16

GSTD - Pipeline teardown

You can stop or destroy your pipeline

17

GSTD - Capabilities

● Turn on/off debug
● Send events: EoS, seeking, flush
● Bus polling - thread waiting for specific message

GSTD's best friend...

18

Interpipes (1)

● GStreamer plug-in
● Allows communication between +2 pipelines - dynamic

pipelines.
● 2 elements:

○ Interpipesink (name)
○ interpipesrc (listen-to)

Replaces tee, selector, valve and other similar...
19

Interpipes (2)

● Split pipeline
● Interconnect pipelines - Dynamic branches
● State of each pipeline is independent
● Order independent, state independent

20

No more
stalled

pipelines

Interpipes - capabilities

● Caps negotiation - Interconnect them correctly
● Timestamp compensation - Adjust timestamps to match

pipeline clock
● Event forwarding - EoS, seeking (recording, playback)

21

Media Server - product description

● Camera to monitor an Aquarium
○ 1920x1080 resolution
○ 30 fps
○ Viewfinder - capture & display
○ Snapshots when manta ray is detected
○ RTSP Streaming for live remote viewing
○ Recording
○ Playback
○ Trick Modes

■ seeking, slow motion and reverse playback

22

Media Server - Viewfinder (1)

● Pipeline 1: camera
● Pipeline 2: display

23

camera interpipesink interpipesrc display

● Create camera pipeline:

● Create display pipeline:

Media Server - Viewfinder (2)

24

Media Server - Viewfinder (3)

● Play camera pipeline:

● Play display pipeline:

 25
TX1

Media Server - Snapshot (1)

● Pipeline 3: snapshot

26

camera interpipesink

interpipesrc display

interpipesrc JPEG filesink

Media Server - Snapshot (2)

● Create snapshot pipeline:
○ listen-to = camera
○ num-buffers = 1

27

Media Server - Snapshot (3)

● Play snapshot pipeline:
○ An EOS will be posted after the first buffer
○ Wait for EOS on the bus

 28

push one buffer

configure gstd to listen for EOS

block waiting for EOS

NULL the pipeline

TX1

Media Server - RTSP Streaming (1)

● Pipeline 4: streaming

29

camera interpipesink

interpipesrc display

interpipesrc JPEG filesink

interpipesrc encoder payloader rtspsink

● Create streaming pipeline:

Media Server - RTSP Streaming (2)

30

Media Server - RTSP Streaming (3)

● Play streaming pipeline:
○ Nothing special here

 31

TX1

Media Server - Recording (1)

● Pipeline 5: recording

32

camera interpipesink

interpipesrc display

interpipesrc JPEG filesink

interpipesrc VP8 payloader rtspsink

containerinterpipesrc H264 filesink

● Create recording pipeline:

Media Server - Recording (2)

33

Media Server - Recording (3)

● Play recording pipeline:
○ MP4 needs an EOS to properly close

34

force an EOS

configure gstd to listen for EOS

block waiting for EOS

NULL the pipeline

TX1

Media Server - Playback (1)

● Pipeline 6: playback

35

camera interpipesink

interpipesrc display

interpipesrc JPEG filesink

interpipesrc VP8 payloader rtspsink

containerinterpipesrc H264 filesink

playback interpipesink

No tee!

Dynamic
Connections

● Create playback pipeline:

Media Server - Playback (2)

36

Media Server - Playback (3)

● Play/Stop playback pipeline:
○ On Play: connect display and other pipelines to playback

37

Connect to playback

Start playback

Media Server - Playback (4)

● Play/Stop playback pipeline:
○ On Stop: connect display and other pipelines back to camera

38

Connect to camera

Stop playback

TX1

● Seek to the beginning of the file
● Other seek values are set by default

Media Server - Trick Play (1)

39
TX1

end

end-type

start
start-type

flags
formatrate

● Play in slow motion
○ Rate is set to 50%

Media Server - Trick Play (2)

40
TX1

● Reverse playback
○ Rate is set to a negative value!

Media Server - Trick Play (3)

41
TX1

GSTD - Future development

● +Bus messages: new clock, progress, etc
● +IPC mechanisms: Dbus for instance
● Signals support: Able to receive signals notifications
● Pad properties support
● Windows? RidgeRun focused on Linux

42

Code location and documentation

● GSTD and interpipes are open source:

https://github.com/RidgeRun/gstd-1.x

https://developer.ridgerun.com/wiki/index.php?title=Gstd-1.0

https://github.com/RidgeRun/gst-interpipe-1.0

https://developer.ridgerun.com/wiki/index.php?title=GstInterpipe

43

https://github.com/RidgeRun/gstd-1.x
https://github.com/RidgeRun/gst-interpipe-1.0

Questions?

44

support@ridgerun.com

45

Thank you!

GSTD - Low Level API

● Resource tree
● CRUD operations (Create, Read, Update, Delete)

46

is equivalent to

GSTD - Low Level API

● Resource tree
● CRUD operations (Create, Read, Update, Delete)

47

is equivalent to

