
Pinos | Wim Taymans1

Simple Plugin API

Wim Taymans
Principal Software Engineer
October 10, 2016

Pinos | Wim Taymans2

In the begining

● Pinos

● DBus service for sharing camera
● Upload video and share

Pinos | Wim Taymans3

And then...

● Extend scope

● Add audio too upload, playback, capture
● Need for processing pipeline…
● Jack-like graphs?
● Need for real-time processing with extemely low

latency 0.3ms <32 bytes buffers

Pinos | Wim Taymans4

GStreamer

● Creates a lot of threads
● Sources, sinks, demuxers
● No way to combine threads

● Does all kinds of locking and allocation in processing
threads

● Buffers, events, caps...
● Lots of allocations while negotiating

➡ Difficult to predict real-time behaviour
➡ We can do better

Pinos | Wim Taymans5

A GStreamer plugin does a lot

Plugin

Bufferpool

PadPad

Format
Negotiation

Scheduling
Negotiation

Threads

Locks Poll/read
allocation

Clock
sync

Stream
sync

QoS

Async
GstBus

messages

Processing

Pinos | Wim Taymans6

Can we focus on this

Plugin

Bufferpool

PadPad

Format
Negotiation

Scheduling
Negotiation

Threads

Locks Poll/read
allocation

Clock
sync

Stream
sync

QoS

Async
GstBus

messages

Processing

Pinos | Wim Taymans7

The goals

● Unified plugin API
● For muxer, demuxer, decoder, encoder, effect, mixer,…

● Software + Hardware implementations

● Synchronous and asynchronous

● Hard real-time capable

● Extensible

● Minimal
● Does not bring in a complete framework
● Can be used in different frameworks

Pinos | Wim Taymans8

The options.. (and its plugins)

Unified SW HW RT ext generic minimal Async

v4l2

alsa

LADSPA

LV2

MediaCodec

OpenMAX

FFMpeg

MFT

upipe

GStreamer

Pinos | Wim Taymans9

The ideas

● Interfaces
● Structure with methods
● Introspection of interfaces

● URI map
● Map a string to an id

● API is .h files
● Methods either inline or in separate helper library

Pinos | Wim Taymans10

The Node

● A basic processing module

● Dynamic input/output ports
● Ports are ids

● Does not do allocations
● App must do allocations of buffers
● Allocation free format description

● Give input, produces output

● Goes through state changes

Pinos | Wim Taymans11

The Node states

Ready

Init

Configure

Paused

Streaming

Error

Set property
Add/remove ports
Set port format

Allocate buffers
Use buffer

Start

Loading, initializing

Pause
Flush

Start

Clear buffers

Clear format
dynamic port added

Pinos | Wim Taymans12

The Properties

● Key/type/value

● Unset values + description of possible values
● Lists
● Ranges (with steps)
● Enum/flags

● For nodes and ports

Pinos | Wim Taymans13

The Formats

● Media type

● Media subtype

● Properties

● For ports
● Enumerate formats (with filter)
● Set format (clear by setting NULL format)

Pinos | Wim Taymans14

The Port info

● Setting a format changes the info on a port

● Port features (live, can allocate,…)

● latency

● Allocation parameters
● Size, alignment, metadata, padding

Pinos | Wim Taymans15

The Allocation

● Application allocates buffers + metadata
● Based on port info

● Allocates the buffer memory or..

● Have one of the ports allocate memory if possible
● With alloc_buffers
● Only if something else than malloc, really

● Does use_buffers on the ports

Pinos | Wim Taymans16

Streaming

● Asynchronous or synchronous processing

● Async
● You get events when data can be pushed and pulled

from ports
● Sync

● You push and pull from pads
● Return code tells you what to do

● Push more, pull, go back to configure/ready state

Pinos | Wim Taymans17

Streaming

● Push buffer to input port
● You actually only send the id of the buffer
● Both ports know buffer from alloc/use_buffer

● Pull buffer from output port
● Pull many ports in one go
● Get the id of the buffer

● Event when buffer id is no longer used

Pinos | Wim Taymans18

Port status

● Tells you
● If you can push/pull
● If the port has a format
● If the port has buffers

Pinos | Wim Taymans19

Points of interest

● Only callback is for events

● Some methods can be async
● High bit set in return value, low bits are seqnum
● You get event with seqnum when the command

completes

Pinos | Wim Taymans20

Platform support

● A list of interfaces is given at initialization

● Logging

● Mainloop integration
● Mainloop
● Dataloop (for realtime processing)

● Scheduler
● For doing things in other threads

Pinos | Wim Taymans21

How to use

● Host has a lot of flexibility and needs to be smart
● Can choose negotiation
● Can choose allocation
● Can choose scheduling, threads, mainloops
● Can choose synchronization

● A GStreamer plugin can be a host

● We could write higher level components working
directly with the nodes

Pinos | Wim Taymans22

Example.. negotiation

Host

port_enum_format

port_enum_format

port_set_format

port_set_format

Choose
Format

Pinos | Wim Taymans23

Example.. negotiation

Host

port_get_info

port_get_info

port_alloc_buffers

port_use_buffers

Allocate
Buffers (with or

without memory)

Pinos | Wim Taymans24

Example.. execution

Host

port_pull_output

port_push_input

HAVE_OUTPUT

NEED_INPUT

Pinos | Wim Taymans25

Status

● V4l2 monitor and source

● Alsa source/sink and monitor

● Audiotestsrc/videotestsrc

● Logging/mapping

● Clock

● Negotiation, allocator in Pinos

● Scheduler in Pinos for capture->send

Pinos | Wim Taymans26

Future plans

● Still early prototypes

● Plan to move some code from Gstreamer in SPA
plugins

● Audio/video conversion
● Audiotestsrc/videotestsrc

● Work on generic scheduler for plugins

● Hope to use Gstreamer has host for plugins

Pinos | Wim Taymans27

http://cgit.freedesktop.org/~wtay/pinos/log/?h=workhttp://cgit.freedesktop.org/~wtay/pinos/log/?h=work

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

