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In the begining

● Pinos

● DBus service for sharing camera
● Upload video and share
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And then...

● Extend scope

● Add audio too upload, playback, capture
● Need for processing pipeline…
● Jack-like graphs?
● Need for real-time processing with extemely low 

latency 0.3ms <32 bytes buffers
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GStreamer

● Creates a lot of threads
● Sources, sinks, demuxers
● No way to combine threads

● Does all kinds of locking and allocation in processing 
threads

● Buffers, events, caps...
● Lots of allocations while negotiating

➡ Difficult to predict real-time behaviour
➡ We can do better
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The goals

● Unified plugin API
● For muxer, demuxer, decoder, encoder, effect, mixer,…

● Software + Hardware implementations

● Synchronous and asynchronous

● Hard real-time capable

● Extensible

● Minimal
● Does not bring in a complete framework
● Can be used in different frameworks
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The options.. (and its plugins)

Unified SW HW RT ext generic minimal Async

v4l2

alsa

LADSPA

LV2

MediaCodec

OpenMAX

FFMpeg

MFT

upipe

GStreamer
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The ideas

● Interfaces
● Structure with methods
● Introspection of interfaces

● URI map
● Map a string to an id

● API is .h files
● Methods either inline or in separate helper library
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The Node

● A basic processing module

● Dynamic input/output ports
● Ports are ids

● Does not do allocations
● App must do allocations of buffers
● Allocation free format description

● Give input, produces output

● Goes through state changes
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The Node states

Ready

Init

Configure

Paused

Streaming

Error

Set property
Add/remove ports
Set port format

Allocate buffers
Use buffer

Start

Loading, initializing

Pause
Flush

Start

Clear buffers

Clear format
dynamic port added
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The Properties

● Key/type/value

● Unset values + description of possible values
● Lists
● Ranges (with steps)
● Enum/flags

● For nodes and ports
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The Formats

● Media type

● Media subtype

● Properties

● For ports
● Enumerate formats (with filter)
● Set format (clear by setting NULL format)
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The Port info

● Setting a format changes the info on a port

● Port features (live, can allocate,…)

● latency

● Allocation parameters
●  Size, alignment, metadata, padding
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The Allocation

● Application allocates buffers + metadata
● Based on port info

● Allocates the buffer memory or..

● Have one of the ports allocate memory if possible
● With alloc_buffers
● Only if something else than malloc, really

● Does use_buffers on the ports
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Streaming

● Asynchronous or synchronous processing

● Async
● You get events when data can be pushed and pulled 

from ports
● Sync

● You push and pull from pads
● Return code tells you what to do

● Push more, pull, go back to configure/ready state
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Streaming

● Push buffer to input port
● You actually only send the id of the buffer
● Both ports know buffer from alloc/use_buffer

● Pull buffer from output port
● Pull many ports in one go
● Get the id of the buffer

● Event when buffer id is no longer used
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Port status

● Tells you
● If you can push/pull
● If the port has a format
● If the port has buffers
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Points of interest

● Only callback is for events

● Some methods can be async
● High bit set in return value, low bits are seqnum 
● You get event with seqnum when the command 

completes
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Platform support

● A list of interfaces is given at initialization

● Logging

● Mainloop integration
● Mainloop
● Dataloop (for realtime processing)

● Scheduler
● For doing things in other threads 
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How to use

● Host has a lot of flexibility and needs to be smart
● Can choose negotiation
● Can choose allocation
● Can choose scheduling, threads, mainloops
● Can choose synchronization

● A GStreamer plugin can be a host

● We could write higher level components working 
directly with the nodes
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Example.. negotiation

Host

port_enum_format

port_enum_format

port_set_format

port_set_format

Choose
Format
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Example.. negotiation

Host

port_get_info

port_get_info

port_alloc_buffers

port_use_buffers

Allocate
Buffers (with or 

without memory)
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Example.. execution

Host

port_pull_output

port_push_input

HAVE_OUTPUT

NEED_INPUT
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Status

● V4l2 monitor and source

● Alsa source/sink and monitor

● Audiotestsrc/videotestsrc

● Logging/mapping

● Clock

● Negotiation, allocator in Pinos

● Scheduler in Pinos for capture->send
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Future plans

● Still early prototypes

● Plan to move some code from Gstreamer in SPA 
plugins

● Audio/video conversion
● Audiotestsrc/videotestsrc

● Work on generic scheduler for plugins

● Hope to use Gstreamer has host for plugins
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http://cgit.freedesktop.org/~wtay/pinos/log/?h=workhttp://cgit.freedesktop.org/~wtay/pinos/log/?h=work
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