
1

The state of Video Editing in
GStreamer

Thibault Saunier
Samsung Open Source Group

thibault.saunier@osg.samsung.com

2

History of multimedia editing with
GStreamer
● GNonlin:

○ Started in 2001 by Wim Taymans
○ In 2004 Edward Hervey starts hacking on it when

starting the Pitivi project
● GStreamer Editing Services:

○ Started in 2009 by Edward Hervey
● Non Linear Engine

○ Big refactoring of GNonLin in 2014

3

The NLE GStreamer plugin

4

Major issues in GNonLin

● Lack of thread safety
● Many useless threads were created

5

Lack of thread safety in GNonLin

● gnlcomposition used to unlink/relink new
pipelines from the streaming thread (where the
EOS was received) or from the seeking thread

● In nlecomposition we introduced a new master
thread where all the operations on children
happen sequentially

6

Creation of many useless thread

● In GnlComposition we used to have all
elements inside in PAUSED state → many
thread created and just waiting

● In NleComposition elements are not inside it
until they are actually needed

7

nlecomposition

NLEComposition (from 2 to 3)
currentbin

Nleobjectsource
(start=0,

duration=10)

Effect
(start=5
duration=1)

Nleoperation
(exandable)

Nleobjectsource1
(start=2,

duration=1)

8

State of the Non Linear Engine

● Still lack testing outside GES
● Some part of the code could use refactoring
● Still lacking gst-launch support
● Most races are gone
● Working properly when used with GES

9

The GStreamer Editing Services

● Allow simple editing to get done as easily as
possible

● Allow full fledged Video editing app to be built
'simply'

● NON goal of GES: handle all use cases where
NLE is useful

10

Main features

● Create a timeline, add clips, titles, transitions,
effects, group them... easily

● GstPipeline subclass to play and render a timeline
● Edit the clips with advanced methods (ripple, roll,

etc...)
● Asset handling support
● ges-launch-1.0 a tool to use GES on the

command line

11

ges-launch got rewriten

● New 'command line formatter'
● Pretty flexible syntax that allows to virtually

define any timeline

12

ges-launch examples

● Playback a portion of a media file

● Render two parts of two media files stitched

● Complex timeline

ges-launch-1.0 +clip /path/to/media inpoint=4.0 duration=2.0 start=4.0

ges-launch-1.0 +clip /path/to/media i=4.0 d=2.0 \
 +clip /path/to/media1 i=5.0 s=2.0 d=1.0 \
 -f 'video/webm:video/x-vp8:audio/x-vorbis' -o /path/to/rendered/file.webm

ges-launch-1.0 +clip /home/thiblahute/Videos/1.webm i=5.0 d=5 l=0 \
 set-posy 300 set-with 400 set-height 300 \
 +clip /home/thiblahute/Videos/2.webm s=0 i=20 d=5 l=2 \
 set-posx 150 set-posy 30 set-width 600 set-height 400

13

GstValidate integration

● GstValidateScenario: straight forward files
to make actions on a pipeline, or any
component

● Use to easily reproduce bugs (those
scenario files are generated by Pitivi)

14

Scenario example

add-clip, name=c0, layer-priority=0,
 asset-id=file:///some/video, type=GESUriClip, \
 start=0, inpoint=0, duration=5.0

Adding a clip to a second layer
add-clip, name=c1, layer-priority=1,\
 asset-id=file:///other/video, type=GESUriClip, \
 start=0, inpoint=0, duration=5.0

Trim the clip
edit-container, edge=edge_start, container-name=c0, \
 position=1.0, edit-mode=(string)edit_trim;

15

Testing

● Quite many unit tests (including python
ones)

● Intensive integration testsuite running on
ci.gstreamer.net playing, seeking and
rendering timelines using GstValidate

● More tests to come, especially on plain NLE

16

Future of NLE

● It basically does what we want it to do
● Some code refactoring

○ No big plan at this point
● Maintenance / bug fixing

17

Future of GES

● Short/mid term
○ Refactor big chunk of it
○ Totally remove the concept of priorities

● Long term plan
○ Integration with higher level APIs (GstPlayer,

GstTranscoding)
○ GES 2.0: the API could be drastically

simplified and reduced

18

Thank you!

● Any question?

