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Introduction
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Who?

● Long-term GStreamer core developer and maintainer
since 2006

● Did the last few GStreamer releases and probably touched 
every piece of code by now

● One of the founders of Centricular Ltd
– Consultancy offering services around GStreamer, graphics and 

multimedia related software
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What?

● How do GStreamer element states work?
● Internals you usually don’t have to worry about
● Problems with the current design
● Ideas for a better future
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The States
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State Transitions

NULL PAUSED PLAYINGREADY
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State Transitions (2)

NULL PAUSED PLAYINGREADY

● NULL: Deactivated, element occupies no resources
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State Transitions (3)

NULL PAUSED PLAYINGREADY

● READY: Check and allocate resources
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State Transitions (4)

NULL PAUSED PLAYINGREADY

● PAUSED: pre-roll, i.e. get a buffer to each sink
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State Transitions (5)

NULL PAUSED PLAYINGREADY

● PLAYING: active dataflow, running-time is increasing
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State Changes

Let’s start simple
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Short Overview of
Relevant API
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Application API

● gst_element_set_state(element, state)

– Returns: SUCCESS/FAILURE/others later

● gst_element_get_state(element, *state, *pending, tout)

● STATE_CHANGED(old, new, pending) message

● ERROR message – aborts state changes

● More messages later
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Virtual Methods

● change_state(element, transition):
Do what is needed to change the state

Usually never used outside GstPipeline/Bin/Element itself

● state_changed(element, old, new, pending): Notification

● set_state(element, state)

● get_state(element, state, pending, timeout)
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Internal State Tracking

● target_state: Set by set_state(), final target

● current_state: Where are we now?

● next_state: What state are we going to right now?

● pending_state: What is the intermediate final state? Later!

● last_return: Keep track of last state success/failure

● state_{lock,cond,cookie}: Locking / detection of concurrent change
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Element – Intermediate States States
element bus

set_state(PAUSED)
set_state(PAUSED)

change_state(NULL,READY)

continue_state(SUCCESS|FAILED)

if SUCCESS
STATE_CHANGED(NULL,READY,PAUSED)

change_state(READY,PAUSED)

continue_state(SUCCESS|FAILED)

STATE_CHANGED(READY,PAUSED,VOID)

return SUCCESS
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GstBin – Manages Child States
bin c1 c2

set_state(bin, N)
change_state()

if state(c1)>=N set_state(c1, N)

change_state(P,N)

STATE_CHANGED

SUCCESS | FAILED

if SUCCESS
if state(c2)>=N set_state(c2, N)

change_state(P,N)

STATE_CHANGED

SUCCESS | FAILED



18 Centricular

GstBin – Traps & Quirks

● Not if element is added/removed
– set_state()

– sync_state_with_parent(): Sets parent's pending state

● Not if gst_element_set_locked_state(child, TRUE)
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GstPipeline – Makes it all work together

● PAUSED→PLAYING
– Select a clock

– Measure & set base time

● PLAYING→PAUSED
– Measure start time, how much time was spent in PAUSED?

● Go watch Nicolas’ talk tomorrow for what that means!
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All Synchronous? No!

● Acquiring resources can block
– Network, hardware, …

● Welcome to asynchronous state changes
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Asynchronous State Changes

If you don’t want to wait
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Single Element

● Starts easy!

● change_state() returns ASYNC

● ASYNC_START / ASYNC_DONE messages
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Single Element (2)

● When done, post ASYNC_DONE and

– gst_element_abort_state() & ERROR message on failure, or

– gst_element_continue_state()*, or

– GstBin subclass: GstBin::handle_message() instead of posting 
directly
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Single Element (3)
element bus

set_state(S)
change_state(P,S)

ASYNC_START

return ASYNC

ponder & set next, pending, current, state_ret
ASYNC_DONE

continue_state(SUCCESS)

STATE_CHANGED(...)
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GstBin – State Tracking
bin child

set_state(S)

ASYNC_START

return ASYNC

if first async element ASYNC_START

return ASYNC

ASYNC_DONE

if last async element
gst_bin_continue_func()

change_state()
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GstBin – State Tracking

● Adding / removing elements checks for ASYNC

– Can trigger new async state changes!

– Can trigger PAUSED→ PAUSED and similar

● async-handling property=true || top-level bin
– Only these are doing the continue part

– Only others are posting ASYNC_START
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Progress Feedback

● PROGRESS messages – Only informative

● Start/Continue/Complete/Cancelled/Error
● String code & human readable text

● Used only by rtspsrc / rtspclientsink so far
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Losing State

Async – Just the other way around
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Elements Losing State

● Flushes (e.g. seek) move sinks out of PLAYING/PAUSED
– gst_element_lost_state()

– Posts ASYNC_START, pending=PAUSED, target=old state, 
current=PAUSED, next=PAUSED

– Does not go through change_state()

● Triggered from an element inside the pipeline at any point in time, 
instead of being triggered from the outside!

● Handled in bins exactly the same
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Elements Losing State (2)
bin child

lost_state()

ASYNC_START

if first async element ASYNC_START

ASYNC_DONE

if last async element
gst_bin_continue_func()

change_state(PAUSED)

change_state(target)



31 Centricular

Live Elements

Don’t affect state changes… or do they?
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NO_PREROLL

● change_state() returns neither SUCCESS nor ASYNC
– NO_PREROLL!

● Considered like SUCCESS, overrides ASYNC

● Means
– Don't stay in PAUSED for long

– PAUSED is reached immediately (local) without waiting for preroll
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GstBin Handling

● Ignore all async elements and commit state immediately
● Ignore ASYNC_START
● Async elements are changing states locally
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Design Bugs & Limitations



35 Centricular

Concurrent Top-down/Bottom-Up

● Bugzilla #760532, #768522, #759604
● 2nd async state change is ignored by GstBin

– It's not clear what to do! Who/what has priority?

● Can lead to (at least)
– Elements stuck in PAUSED forever

– Elements stuck in PLAYING although bin is PAUSED

– Base time is not set correctly due to no change_state()

● Usually not a problem: both application triggered and both entry points 
take the state lock!
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Mixing live and async

● Bugzilla #760532
● READY→PAUSED

– NO_PREROLL overrides ASYNC, ASYNC is forgotten

– Commit state immediately

● Later state change forgets NO_PREROLL
● Losing state can cause whole pipeline to stay ASYNC in PAUSED
● Causes inconsistencies or pipeline stuck in PAUSED

● Inconsistencies usually ignored, stuck in PAUSED very unlikely
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Inconsistencies & Debuggability

● State lock is used inconsistently, different than the docs say
– There are probably some hidden bugs here

– Fixing it is not possible at this point as it breaks existing code

● Having state changes handled from multiple threads 
concurrently makes debugging borderline impossible
– It's also often not clear what the correct behaviour should be if there 

are multiple concurrent ones
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Ideas for a better future
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Always let the pipeline handle it

● Top-down, always
● Dedicated, single thread, properly locked

– No concurrent state changes

– One after another

● Lost state by asking the pipeline
– No magic state value changing

– Always go through normal state change machinery
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Always Asynchronous

● Dedicated thread makes it easy to do everything asynchronous
● Simpler code in general

– Only need to handle ASYNC case

● Nobody wants synchronous (blocking!) state changes anyway
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Don’t mix live’ness with states

● Track separately from the state
● Always commit states immediately if any live element in the bin
● Do asynchronous locally in the other elements

● Like now but more consistent and not forgetting live'ness
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Thanks!

Any questions?
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