
1 Centricular

GStreamer Element States
How do they work in detail?

GStreamer Conference 2016, Berlin

10 October 2016

Sebastian Dröge <sebastian@centricular.com>

mailto:sebastian@centricular.com

2 Centricular

Introduction

3 Centricular

Who?

● Long-term GStreamer core developer and maintainer
since 2006

● Did the last few GStreamer releases and probably touched
every piece of code by now

● One of the founders of Centricular Ltd
– Consultancy offering services around GStreamer, graphics and

multimedia related software

4 Centricular

What?

● How do GStreamer element states work?
● Internals you usually don’t have to worry about
● Problems with the current design
● Ideas for a better future

5 Centricular

The States

6 Centricular

State Transitions

NULL PAUSED PLAYINGREADY

7 Centricular

State Transitions (2)

NULL PAUSED PLAYINGREADY

● NULL: Deactivated, element occupies no resources

8 Centricular

State Transitions (3)

NULL PAUSED PLAYINGREADY

● READY: Check and allocate resources

9 Centricular

State Transitions (4)

NULL PAUSED PLAYINGREADY

● PAUSED: pre-roll, i.e. get a buffer to each sink

10 Centricular

State Transitions (5)

NULL PAUSED PLAYINGREADY

● PLAYING: active dataflow, running-time is increasing

11 Centricular

State Changes

Let’s start simple

12 Centricular

Short Overview of
Relevant API

13 Centricular

Application API

● gst_element_set_state(element, state)

– Returns: SUCCESS/FAILURE/others later

● gst_element_get_state(element, *state, *pending, tout)

● STATE_CHANGED(old, new, pending) message

● ERROR message – aborts state changes

● More messages later

14 Centricular

Virtual Methods

● change_state(element, transition):
Do what is needed to change the state

Usually never used outside GstPipeline/Bin/Element itself

● state_changed(element, old, new, pending): Notification

● set_state(element, state)

● get_state(element, state, pending, timeout)

15 Centricular

Internal State Tracking

● target_state: Set by set_state(), final target

● current_state: Where are we now?

● next_state: What state are we going to right now?

● pending_state: What is the intermediate final state? Later!

● last_return: Keep track of last state success/failure

● state_{lock,cond,cookie}: Locking / detection of concurrent change

16 Centricular

Element – Intermediate States States
element bus

set_state(PAUSED)
set_state(PAUSED)

change_state(NULL,READY)

continue_state(SUCCESS|FAILED)

if SUCCESS
STATE_CHANGED(NULL,READY,PAUSED)

change_state(READY,PAUSED)

continue_state(SUCCESS|FAILED)

STATE_CHANGED(READY,PAUSED,VOID)

return SUCCESS

17 Centricular

GstBin – Manages Child States
bin c1 c2

set_state(bin, N)
change_state()

if state(c1)>=N set_state(c1, N)

change_state(P,N)

STATE_CHANGED

SUCCESS | FAILED

if SUCCESS
if state(c2)>=N set_state(c2, N)

change_state(P,N)

STATE_CHANGED

SUCCESS | FAILED

18 Centricular

GstBin – Traps & Quirks

● Not if element is added/removed
– set_state()

– sync_state_with_parent(): Sets parent's pending state

● Not if gst_element_set_locked_state(child, TRUE)

19 Centricular

GstPipeline – Makes it all work together

● PAUSED→PLAYING
– Select a clock

– Measure & set base time

● PLAYING→PAUSED
– Measure start time, how much time was spent in PAUSED?

● Go watch Nicolas’ talk tomorrow for what that means!

20 Centricular

All Synchronous? No!

● Acquiring resources can block
– Network, hardware, …

● Welcome to asynchronous state changes

21 Centricular

Asynchronous State Changes

If you don’t want to wait

22 Centricular

Single Element

● Starts easy!

● change_state() returns ASYNC

● ASYNC_START / ASYNC_DONE messages

23 Centricular

Single Element (2)

● When done, post ASYNC_DONE and

– gst_element_abort_state() & ERROR message on failure, or

– gst_element_continue_state()*, or

– GstBin subclass: GstBin::handle_message() instead of posting
directly

24 Centricular

Single Element (3)
element bus

set_state(S)
change_state(P,S)

ASYNC_START

return ASYNC

ponder & set next, pending, current, state_ret
ASYNC_DONE

continue_state(SUCCESS)

STATE_CHANGED(...)

25 Centricular

GstBin – State Tracking
bin child

set_state(S)

ASYNC_START

return ASYNC

if first async element ASYNC_START

return ASYNC

ASYNC_DONE

if last async element
gst_bin_continue_func()

change_state()

26 Centricular

GstBin – State Tracking

● Adding / removing elements checks for ASYNC

– Can trigger new async state changes!

– Can trigger PAUSED→ PAUSED and similar

● async-handling property=true || top-level bin
– Only these are doing the continue part

– Only others are posting ASYNC_START

27 Centricular

Progress Feedback

● PROGRESS messages – Only informative

● Start/Continue/Complete/Cancelled/Error
● String code & human readable text

● Used only by rtspsrc / rtspclientsink so far

28 Centricular

Losing State

Async – Just the other way around

29 Centricular

Elements Losing State

● Flushes (e.g. seek) move sinks out of PLAYING/PAUSED
– gst_element_lost_state()

– Posts ASYNC_START, pending=PAUSED, target=old state,
current=PAUSED, next=PAUSED

– Does not go through change_state()

● Triggered from an element inside the pipeline at any point in time,
instead of being triggered from the outside!

● Handled in bins exactly the same

30 Centricular

Elements Losing State (2)
bin child

lost_state()

ASYNC_START

if first async element ASYNC_START

ASYNC_DONE

if last async element
gst_bin_continue_func()

change_state(PAUSED)

change_state(target)

31 Centricular

Live Elements

Don’t affect state changes… or do they?

32 Centricular

NO_PREROLL

● change_state() returns neither SUCCESS nor ASYNC
– NO_PREROLL!

● Considered like SUCCESS, overrides ASYNC

● Means
– Don't stay in PAUSED for long

– PAUSED is reached immediately (local) without waiting for preroll

33 Centricular

GstBin Handling

● Ignore all async elements and commit state immediately
● Ignore ASYNC_START
● Async elements are changing states locally

34 Centricular

Design Bugs & Limitations

35 Centricular

Concurrent Top-down/Bottom-Up

● Bugzilla #760532, #768522, #759604
● 2nd async state change is ignored by GstBin

– It's not clear what to do! Who/what has priority?

● Can lead to (at least)
– Elements stuck in PAUSED forever

– Elements stuck in PLAYING although bin is PAUSED

– Base time is not set correctly due to no change_state()

● Usually not a problem: both application triggered and both entry points
take the state lock!

36 Centricular

Mixing live and async

● Bugzilla #760532
● READY→PAUSED

– NO_PREROLL overrides ASYNC, ASYNC is forgotten

– Commit state immediately

● Later state change forgets NO_PREROLL
● Losing state can cause whole pipeline to stay ASYNC in PAUSED
● Causes inconsistencies or pipeline stuck in PAUSED

● Inconsistencies usually ignored, stuck in PAUSED very unlikely

37 Centricular

Inconsistencies & Debuggability

● State lock is used inconsistently, different than the docs say
– There are probably some hidden bugs here

– Fixing it is not possible at this point as it breaks existing code

● Having state changes handled from multiple threads
concurrently makes debugging borderline impossible
– It's also often not clear what the correct behaviour should be if there

are multiple concurrent ones

38 Centricular

Ideas for a better future

39 Centricular

Always let the pipeline handle it

● Top-down, always
● Dedicated, single thread, properly locked

– No concurrent state changes

– One after another

● Lost state by asking the pipeline
– No magic state value changing

– Always go through normal state change machinery

40 Centricular

Always Asynchronous

● Dedicated thread makes it easy to do everything asynchronous
● Simpler code in general

– Only need to handle ASYNC case

● Nobody wants synchronous (blocking!) state changes anyway

41 Centricular

Don’t mix live’ness with states

● Track separately from the state
● Always commit states immediately if any live element in the bin
● Do asynchronous locally in the other elements

● Like now but more consistent and not forgetting live'ness

42 Centricular

Thanks!

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

