Feature Detection Plugins
Speed-up by OmpSs@FPGA

Nicola Bettin
Daniel Jimenez-Gonzalez
Xavier Martorell
Pierangelo Nichele
Alberto Pomella

nicola.bettin@Vimar.com, pierangelo.nichele@Vimar.com, alberto.pomella@Vimar.com
djimenez@ac.upc.edu, xavim@ac.upc.edu
Vimar S.p.A.:
- Italian company from Marostica (VI)
Vimar S.p.A. develops and manufactures devices and systems for Home and Building automation:
- Wiring devices
- Smart Home devices
- Video Door Entry Systems
- Access control
- Multi room audio
- Comfort and HVAC
- Security / TVCC
- ...
AXIOM Horizon2020 European Project
AXIOM main goals
The AXIOM BOARD and the AXIOM Software layer
OmpSs: Programming model
Cyber-Physical Systems (CPS) and Smart Home
Feature detection and extraction plugins
Exploration: Cepstrum Analysis Plugin
 GStreamer application
 GStreamer & OmpSs@FPGA
Conclusion
Agile, eXtensible, fast I/O Module for the cyber-physical era

- VIMAR | Home automation, electrical equipment (Domotic)
- Herta Security | Cutting edge facial recognition solutions (Videosurveillance)
- BSC | Barcelona Supercomputing Center (OmpSs)
- Evidence | Embedded software development (LinuxOS + RunTime)
- FORTH | Foundation for Research and Technology – Hellas (Interconnection)
- SECO | Embedded Creators (Which will actually build the computer)
- UNISI | Università degli Studi di Siena (Coordination, Evaluation, Dissemination, Exploitation)
AXIOM Horizon2020 European Project

We are entering the Cyber-Physical Era where natural interactions are required between humans and machines.

Main goals of AXIOM:

- Realize a small board that is flexible, energy efficient and scalable.
- Easy programmability of multi-core heterogeneous architectures (CPU+FPGA) and multi-board architectures.
- Use and develop Open-Source software to manage the board.
- Allow real-time thread scheduling.
- Contribute to Standards.
The AXIOM board and AXIOM software layer

HW

- **SoC + FPGA: Xilinx Zynq Family**
 - Integrate on the same chip multiple cores ARM and FPGA.
- The FPGA is used to:
 - Implement custom accelerators to speedup algorithms and data processing
 - Implement high-speed connections for board-to-board communication (with low cost cable)

SW

- **Linux-based OS and Linux Device Driver**
- **Programming model OmpSs**
- **Portions of applications on FPGA**
 - **OmpSs@FPGA**: Map tasks on the HW resources.
- **At cluster level (multi-board):**
 - **OmpSs@Cluster**: Map tasks on boards cluster
OmpSs : Programming Model

• “OmpSs is an effort to integrate features from the StarSs programming model developed by BSC into a single programming model. In particular, our objective is to extend OpenMP with new directives to support asynchronous parallelism and heterogeneity (devices like GPUs).” *from OmpSs website https://pm.bsc.es/ompss

• OmpSs is based on:
 – Mercurium compiler:
 • to understand OmpSs directives to transform the code to run with asynchronous parallelism and heterogeneity.
 – Nanos++:
 • a runtime designed to serve as runtime support in parallel environments.
The **Cyber-Physical Systems (CPS)** have to permit a rapid and close interaction between system and human.

The **smart home is Cyber-Physical Systems**: a space where humans and the environment interact.

To enable a natural interaction between the user and the smart home, we need to **extract information** from multimedia streams recorded inside and outside the house.

The **GStreamer framework** with his capability to manage the multi-media streams is a good candidate to be used into CPSs inside the Smart Home.
Feature detection and extraction plugins

To extract information from multimedia streams machine learning methods are used.

In all these methods, the input data are processed to be transformed in a set of features (features detection and extraction).

Features detection/extraction from audio stream:
• Cepstral analysis: Mel Frequency Cepstral Coefficients (MFCCs)

Features detection/extraction from video stream:
• Edge detection: Canny, Sobel
Exploration: Cepstrum Analysis Plugin

MAIN STEPS:
1. Develop a GStreamer plugin for feature extraction
2. Parallelize the feature extraction plugin with OmpSs Programming Model
3. “Mapping” the OmpSs tasks on the HW resource in FPGA.

A crucial point is to leave the possibility of mixing in the pipeline “standard” plugins and "OmpSs" plugins.
FIRST TEST:
Parallelization of features extraction plugin

- Compile with OmpSs directives only the features extraction plugin

😊 Low performance because OmpSs uses a thread-pool model, overhead to create and destroy threads
Parallelization of features extraction plugin + GST Application

- Compile with the OmpSs directive the features extraction plugin and the GST application.

😊 Better performance because OmpSs creates all the threads on application startup and uses these to process the tasks in the feature extraction plugin....

😊 …and OmpSs can use these threads in all the plugins that have the OmpSs directives in the pipeline.
Next Steps

NEXT STEPS:

- Introduce the OmpSs directive to process the features extraction plugin in FPGA
- Evaluate the performance increase due to the parallelization and HW acceleration
Conclusion

1. We develop a features detection and extraction plugins
2. We demonstrated that OmpSs Programming Model can be used to parallelize the GStreamer application and plugins
3. Next steps: Speedup GST plugins inside the FPGA on AXIOM board and evaluate the performance increase

Update

Website: http://www.axiom-project.eu
Facebook: https://www.facebook.com/theaxiomproject?ref=hl
Twitter: https://twitter.com/axiom_project
Google+: google.com/+Axiom-projectEu
LinkedIn: https://www.linkedin.com/grp/home?gid=8294592
THANKS!

Alberto Pomella
Pierangelo Nichele
Pierluigi Passera
The VIMAR Team

Daniel Jimenez-Gonzalez
Xavier Martorell
The BSC OmpSs Team

VIMAR

Barcelona Supercomputing Center
Centro Nacional de Supercomputación

Axiom
http://www.axiom-project.eu
Agile, eXtensible, fast I/O Module for the cyber-physical era
• https://pm.bsc.es/ompss
• http://www.axiom-project.eu/
• http://www.vimar.com/en/int
• http://www.sciencedirect.com/science/article/pii/S0141933116300850