
Debugging race condition
problems in GStreamer

10-11 October 2016
Berlin, Germany

Conference 2016

Miguel París
mparisdiaz@gmail.com

2

Who I am

Miguel París

● Software Engineer

● Telematic Systems Master's

● Kurento real-time responsible

● mparisdiaz@gmail.com

● Twitter: @mparisdiaz

mailto:mparisdiaz@gmail.com

Overview

3

 Dealing with multi-threaded systems is not easy in general

 Systems related to media with real-time restrictions are even
much more complicated

– Critical bugs are only seen under specific race conditions
that only take place time to time

– Debugging is a hard work that can consume a lot of time

 Some bugs found in the “Kurento context” due to we work with
dynamic pipelines (performing changes while pipeline is
running)

 Link

 Unlink

 Renegotiate

Process

4

1) Find

● Production
● Tests

2) Reproduce

● Can we create a simple test/program to reproduce the problem?
● It is not needed that it always fails

3) Understand

● Can we gather enough info to understand the problem?
● Use the info to develop a better test/program applying hacks to force

race conditions

4) Fix

● Check that the problem does not take place
● Deeply think about possible drawbacks of the fix

Time consumption

5

Find Reproduce Understand Fix
0

2

4

6

8

10

12

Time

Tool set

6

 Bug finders

 forever.sh (run until failure)

 Bug hunters

 GDB

 valgrind

 G_DEBUG=fatal_warnings

 Specific logs

 Race condition provokers

 sleep

 cond_wait/cond_signal

Using tools

7

 How can we find bugs if the race conditions only happen time to
time (e.g.: 1/1000)?

 Use “bug finders”

● No problem, run as many times you need (e.g.:1000 times)
 Automatic and background way: do not spend developer

time
 Much better if it can be reproduced by an automatic test

 How can we gather the info when the bug happens?

 Use “bug hunters”

 Then analyze outputs and reports
 How can we make a test/program that fails almost always?

 Use “race condition provoker”

 This will help you to understand the problem

Detected Race Condition Bugs

8

● tee: Avoid race condition while forwarding sticky events

– https://bugzilla.gnome.org/show_bug.cgi?id=752213

● tee: adding inactive pad to running element

– https://bugzilla.gnome.org/show_bug.cgi?id=772115

● pad: check caps not NULL before referring

– https://bugzilla.gnome.org/show_bug.cgi?id=768450
● ghostpad: invalid ref getting internal pad

– https://bugzilla.gnome.org/show_bug.cgi?id=768100

● gstclock: segmentation fault when unschedule

– https://bugzilla.gnome.org/show_bug.cgi?id=770953

Analyzing a real case (I)

9

● The goal is not that the audience deeply understand the case, but
see how much complicated this kind of bugs can be and how to apply
the process.

● tee: Avoid race condition while forwarding sticky events

– https://bugzilla.gnome.org/show_bug.cgi?id=752213

– Critical warnings related to tee and pad found in some Kurento tests:

Unexpected critical/warning:
gstpad.c:4258:gst_pad_push_data:<tee0:src_1> Got data flow
before segment event

GStreamerWARNING **:
gstpad.c:5031:store_sticky_event:<tee0:src_1> Sticky event
misordering, got 'caps' before 'streamstart

GStreamerWARNING **:
gstpad.c:5059:store_sticky_event:<fakesink1:sink> Sticky
event misordering, got 'caps' before 'streamstart'

https://bugzilla.gnome.org/show_bug.cgi?id=752213

Analyzing a real case (I)

10

● tee: Avoid race condition while forwarding sticky
events

– https://bugzilla.gnome.org/show_bug.cgi?id=752213

– Critical warnings related to tee and pad found in some
Kurento tests:

Unexpected critical/warning:
gstpad.c:4258:gst_pad_push_data:<tee0:src_1> Got data flow
before segment event

GStreamerWARNING **:
gstpad.c:5031:store_sticky_event:<tee0:src_1> Sticky event
misordering, got 'caps' before 'streamstart

GStreamerWARNING **:
gstpad.c:5059:store_sticky_event:<fakesink1:sink> Sticky
event misordering, got 'caps' before 'streamstart'

https://bugzilla.gnome.org/show_bug.cgi?id=752213

Analyzing real case (II)

11

● Set environment to “hunt” the error

$> echo "core" |sudo tee
/proc/sys/kernel/core_pattern

$> ulimit c unlimited

$> G_DEBUG=fatal_warnings ./forever.sh run.sh

● Ref: man core

– http://man7.org/linux/man-pages/man5/core.5.html

Analyzing a real case (III)

12

[app_thread] [streaming_thread]

 1 - tee0 and fakesink0 are linked

 2 - stream-start event arrives to the tee0:sink pad

 2.1 - it is forwarded to tee0:src_0 and fakesink0:sink

 3 - Just:

 - after forwarding the event to all tee src pads

 - and before storing the sticky event in tee0:sink pad

 a new tee src pad is added (tee:src_1) and linked to fakesink1:sink

 - The stream-start is NOT forwarded to tee:src_1 because the forwarding iteration has already finished

 - the stream start is NOT stored in tee:src_1 because tee0:sink has not stored the event yet

 4 - caps event arrives to the tee0:sink pad

 4.1 - it is forwarded to all tee src pads and to

fakesink0:sink and fakesink:1:sink pads

 So, fakesink1:sink receives the caps event

 without having the stream-start event

 5 - Performs

 5.1 - fakesink1:sink is unlinked from tee:src_1

 5.2 - tee:src_1 is released

 5.3 - fakesink1:sink is linked to a new tee src pad (tee:src_2)

 5.3.1 - stream-start event is stored in tee:src_2

 5.3.2 - stream-start event is tried to be stored into fakesik1:sink

 Here we have the misordering error

Analyzing real case (IV)

13

<GstPipeline>
pipeline0
[-] -> [>]

GstFakeSink
fakesink1

[=]
parent=(GstPipeline) pipeline0

sync=FALSE
async=FALSE

GstFakeSink
fakesink0
[-] -> [=]

parent=(GstPipeline) pipeline0
sync=FALSE

GstTee
tee0
[=]

parent=(GstPipeline) pipeline0
num-src-pads=1

GstCapsFilter
capsfilter0

[=]
parent=(GstPipeline) pipeline0

caps=audio/x-raw, rate=(int)44100

GstFakeSrc
fakesrc0

[=]
parent=(GstPipeline) pipeline0

filltype=((GstFakeSrcFillType) Leave data as malloced)

Legend
Element-States: [~] void-pending, [0] null, [-] ready, [=] paused, [>] playing
Pad-Activation: [-] none, [>] push, [<] pull
Pad-Flags: [b]locked, [f]lushing, [b]locking; upper-case is set
Pad-Task: [T] has started task, [t] has paused task

sink
[>][bfb]

sink
[>][Bfb]

sink
[>][bfb]

src_0
[>][bfb]

ANYsink
[>][bfb]

src
[>][bfb]

ANYsrc
[>][bfb][T]

ANY

[app_thread]
[streaming_thread]

 1 - tee0 and fakesink0 are linked

 2 - stream-start event arrives to the tee0:sink pad

 2.1 - it is forwarded to tee0:src_0 and fakesink0:sink

Analyzing real case (V)

14

<GstPipeline>
pipeline0
[-] -> [>]

GstFakeSink
fakesink1

[=]
parent=(GstPipeline) pipeline0

sync=FALSE
async=FALSE

GstFakeSink
fakesink0
[-] -> [=]

parent=(GstPipeline) pipeline0
sync=FALSE

GstTee
tee0
[=]

parent=(GstPipeline) pipeline0
num-src-pads=2

GstCapsFilter
capsfilter0

[=]
parent=(GstPipeline) pipeline0

caps=audio/x-raw, rate=(int)44100

GstFakeSrc
fakesrc0

[=]
parent=(GstPipeline) pipeline0

filltype=((GstFakeSrcFillType) Leave data as malloced)

Legend
Element-States: [~] void-pending, [0] null, [-] ready, [=] paused, [>] playing
Pad-Activation: [-] none, [>] push, [<] pull
Pad-Flags: [b]locked, [f]lushing, [b]locking; upper-case is set
Pad-Task: [T] has started task, [t] has paused task

sink
[>][bfb]

sink
[>][Bfb]

sink
[>][bfb]

src_0
[>][bfb]

ANY

src_1
[>][bfb]

ANY

sink
[>][bfb]

src
[>][bfb]

ANYsrc
[>][bfb][T]

ANY

[app_thread] [streaming_thread]

 3 - Just:

 - after forwarding the event to all tee src pads

 - and before storing the sticky event in tee0:sink pad

 a new tee src pad is added (tee:src_1) and linked to fakesink1:sink

 - The stream-start is NOT forwarded to tee:src_1 because the forwarding iteration has already finished

 - the stream start is NOT stored in tee:src_1 because tee0:sink has not stored the event yet

 4 - caps event arrives to the tee0:sink pad

 4.1 - it is forwarded to all tee src pads and to

fakesink0:sink and fakesink:1:sink pads

 So, fakesink1:sink receives the caps event

 without having the stream-start event

Analyzing real case (VI)

15

<GstPipeline>
pipeline0
[-] -> [>]

GstFakeSink
fakesink1

[=]
parent=(GstPipeline) pipeline0

sync=FALSE
async=FALSE

GstFakeSink
fakesink0
[-] -> [=]

parent=(GstPipeline) pipeline0
sync=FALSE

GstTee
tee0
[=]

parent=(GstPipeline) pipeline0
num-src-pads=2

GstCapsFilter
capsfilter0

[=]
parent=(GstPipeline) pipeline0

caps=audio/x-raw, rate=(int)44100

GstFakeSrc
fakesrc0

[=]
parent=(GstPipeline) pipeline0

filltype=((GstFakeSrcFillType) Leave data as malloced)

Legend
Element-States: [~] void-pending, [0] null, [-] ready, [=] paused, [>] playing
Pad-Activation: [-] none, [>] push, [<] pull
Pad-Flags: [b]locked, [f]lushing, [b]locking; upper-case is set
Pad-Task: [T] has started task, [t] has paused task

sink
[>][bfb]

sink
[>][Bfb]

sink
[>][bfb]

src_0
[>][bfb]

audio/x-raw
 rate: 44100

src_2
[>][bfb]

audio/x-raw
 rate: 44100

sink
[>][bfb]

src
[>][bfb]

audio/x-raw
 rate: 44100src

[>][bfb][T]
ANY

[app_thread] [streaming_thread]

 5 - Performs

 5.1 - fakesink1:sink is unlinked from tee:src_1

 5.2 - tee:src_1 is released

 5.3 - fakesink1:sink is linked to a new tee src pad (tee:src_2)

 5.3.1 - stream-start event is stored in tee:src_2

 5.3.2 - stream-start event is tried to be stored into fakesik1:sink

 Here we have the misordering error

General remarks

16

● Invest some minutes to think about race conditions when
you are developing. In this way you can save days (even
weeks) debugging when the bug appears

– For that you can use this idea: “putting sleeps in the
code should work like without them”

● Deadlocks are easier to debug that “open critical sections”

– GStreamer has a lot of “open critical section” to avoid
deadlock due to use mutex instead of recursive mutex

● Use g_warning/g_critical when you consider that the
situation is wrong

– It is better being quite strict with that and add too
g_warnings and remove they later than do not detect
wrong situations

Conclusions/Future work

17

● Debugging race conditions problem can consume a lot of time

– Automate fully or partially the process → Continuous
Integration

– How?

● Use free slots of the nightlies to run forever.sh of some
tests

● Use “bug hunters” to gather info if a bug happens
● Tests only cover part of the system

– What can we do?

● Stress your systems looking for bugs
● Use maintenance periods to use “race condition

provokers” to look for bugs

Thank you

Miguel París
mparisdiaz@gmail.com

http://www.kurento.org
http://www.github.com/kurento
info@kurento.org
Twitter: @kurentoms

http://www.nubomedia.eu

http://www.fi-ware.org

http://ec.europa.eu

	Slide 1
	What’s WebRTC
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

