
GStreamer Conference 2016 Berlin

Profiling GStreamer pipelines
Kyrylo Polezhaiev <kirushyk@gmail.com>

github.com/kirushyk

• I tried to make this speech more fun than previous one

GStreamer Instruments

github.com/kirushyk/gst-instruments

What do we want to inspect?
• Elements work
• Data pulling and pushing between elements

Abstraction in optimizations
• Let’s say we want calculate arithmetical mean for set of values:

Abstraction in optimizations
• Let’s say we want calculate arithmetical mean for set of values:

x[n]

x[2]

x[1]

...

/n

/n

/n

Σ y

Abstraction in optimizations
• Let’s say we want to convert 4K RGB video stream at 120 FPS

to 30 FPS Full HD YUV.

4K
RGB
120	FPS

Full	HD
YUV
30	FPS?

Abstraction in optimizations
• Let’s say we want to convert 4K RGB video stream at 120 FPS

to 30 FPS Full HD YUV.

RGB	to	YUV Frame	
Skipper

Picture	
Scaler

4K
RGB
120	FPS

4K
YUV
120	FPS

Full	HD
YUV
120	FPS

Full	HD
YUV
30	FPS

Abstraction in optimizations
• Let’s say we want to convert 4K RGB video stream at 120 FPS

to 30 FPS Full HD YUV.

Frame	
Skipper RGB	to	YUVPicture	

Scaler

4K
RGB
120	FPS

4K
RGB
30	FPS

Full	HD
RGB
30	FPS

Full	HD
YUV
30	FPS

Pipeline is Abstraction

zozodec tee

queue

queue

lalaenc

lalaenc

Chip or Tag:
Abstractions for Instruction Pointer
• There is a thing named Program Counter
• Processors have Instruction Pointer Register

Abstractions for Instruction Pointer

Instruction Pointer Abstraction
• We can travel via gotos or ifs
• We can call procedures

function

cos()

sin()

m
em

or
y

Instruction Pointer Abstraction
• OS can switch processes
• But we shouldn’t care about

this, no goto help needed
• We may have multiple

threads on single core

function

cos()

sin()

m
em

or
y

another
program

sa
m
e	
m
em

or
y	
so
m
ew

he
re
	e
lse

Pipeline is Abstraction

zozodec tee

queue

queue

lalaenc

lalaenc

lalaenc

zozodec

tee

queue

sin()

m
em

or
y

pipeline instructions

Upstream / Downstream

filesrc oggdemux vorbisdec audioconvert osxaudiosink

• Is there goto somewhere?
• No, function calls!

Upstream / Downstream
filesrc oggdemux vorbisdec audioconvert osxaudiosink

filesrc

oggdemux

vorbisdec

audioconvert

osxaudiosink

Downstream

filesrc oggdemux vorbisdec audioconvert osxaudiosink

Up
st
ac
k

Do
w
ns
ta
ck

filesrc oggdemux vorbisdec audioconvert audiosink

Threads’ realms

zozodec tee

queue

queue

lalaenc

lalaenc

Inter-thread	borders	J

thread	#1
thread	#2

thread	#3

Threads’ realms

source demuxer decoder

thread	#1 thread	#2

Threads’ realms

zozodec tee

queue

queue

lalaenc

lalaenc

thread	#1
thread	#2

thread	#3

thread	#4

#5 #6

Threads’ realms

zozodec tee

queue

queue

lalaenc

lalaenc

thread	#1
thread	#2

thread	#3

thread	#4

Threads’ realms

zozodec tee

queue

queue

lalaenc

lalaenc

thread	#1
thread	#2

thread	#3

General Idea

Running
program

Performance	
ReportTrace	File

Tracing
Analyzing
Trace

Way to trace events in running app
• LD_PRELOAD
• DYLD_INSERT_LIBRARIES + symbol interpose
• GStreamer Tracing Subsystem

Components of GStreamer Instruments

Data	Model	Library Report	Tool

Call	Interception	
Library

Tracer	Plugin

gst-top

Trick with Linux dynamic linker
• Create .so library containing functions with same names

(gst_pad_push, gst_pad_pull_range, etc.)
• That functions can call original ones loaded via dlsym
• Run binary setting LD_PRELOAD environment variable

Trick with Linux dynamic linker
wrapper_function()
{

start = ⏱
log_event (ENTERINTOELEMENT, start)
original_function()
end = ⏱
duration = end - start
log_event (EXITFROMELEMENT, duration)

}

Trick with Linux dynamic linker
Problems:
• No statically-linked functions calls intercepted
• No way to subtract GTask-related work from upstack time
• No way to measure how many time pulling/pushing takes

Trick with macOS Dynamic Linker
Two kinds of DLLs on Mac:
• Bundle (.bundle or .so)
• Dynamic Library (.dylib)

Trick with macOS Dynamic Linker
• DYLD_INSERT_LIBRARIES instead of LD_PRELOAD
• Set DYLD_FORCE_FLAT_NAMESPACE

Trick with macOS Dynamic Linker

Statically link to library with functions we want to wrap +

define INTERPOSE(_replacment, _replacee) \

__attribute__ ((used)) static struct { const void* replacment; const void* replacee; } _interpose_##_replacee \

__attribute__ ((section ("__DATA,__interpose"))) = { (const void*)(unsigned long)&_replacment, (const
void*)(unsigned long)&_replacee };

INTERPOSE (lgi_pad_push, gst_pad_push);

INTERPOSE (lgi_pad_push_list, gst_pad_push_list);

INTERPOSE (lgi_pad_push_event, gst_pad_push_event);

INTERPOSE (lgi_pad_pull_range, gst_pad_pull_range);

INTERPOSE (lgi_element_set_state, gst_element_set_state);

INTERPOSE (lgi_element_change_state, gst_element_change_state);

Trick with macOS Dynamic Linker

Problems:
•We have no enter time in stack
•We have no some hooks we want J

Using Tracing Subsystem
• Create library which listens for hooks to be hit

gst_tracing_register_hook (tracer, "pad-push-pre",

G_CALLBACK (do_push_buffer_pre));

gst_tracing_register_hook (tracer, "pad-pull-range-pre",

G_CALLBACK (do_pull_range_pre));

• Run program setting GST_TRACERS environment variable

Interesting events to log
Most interesting:
• Thread entered element
• Thread exited element
Also (less interesting):
• Hierarchy discovered (auxiliary event)
• Data sent (to measure data flows)

What can we measure?
• Thread execution time
• CPU cycles
• Real time spent

Thread ExecutionTime

• thread_info (…, THREAD_EXTENDED_INFO, …, …)
• clock_gettime (CLOCK_THREAD_CPUTIME_ID, …)
• GetThreadTimes (…, …, …, …, …)

Components of GStreamer Instruments

Data	Model	Library Report	Tool

Call	Interception	
Library

Tracer	Plugin

gst-top

General Idea

Running
program

Performance	
ReportTrace	File

Tracing
Analyzing
Trace

Data Model
• Usually, no elements still alive when we do analysis
• Elements have no date of birth and death
• Element’s address can be used as identifier...
• But theoretically new element can be created at same address
• I didn’t think about names a lot

Data Model

Element’s	Headstone Pad’s	Headstone
identifierMemorial

GstTask’s
Thread’s	Headstone

hierarchy pad	links

1 1...*

1 10...*1

pad	links

0...1 1

ghost	pads

1...*

1...*

Other	Thread’s	
Headstones

1...*

1...*

1

1

0...*

0...*

1 32push push

• Element #1 ENTER
• Element #2 ENTER
• Element #3 ENTER
• Element #3 EXIT
• Element #2 EXIT
• Element #1 EXIT
• Element #1 ENTER
• ...

Algorithm
• Read ENTER / EXIT events one by one
• Detect & add new Elements and Threads to DM
For ENTER events:
• Log thread time we were upstack
• Log element enters
For EXIT events
• Find corresponding ENTER
• Log time we were in element and subtract downstack time

Threads outside GThreadPool & GstTask
• Wrap thread creation
• Assign created threads to corresponding elements
• When pushing / pulling, take a look on execution time of each

thread assigned to element

Third-party thread pools

Threads’ realms

zozodec tee

queue

queue

lalaenc

lalaenc

thread	#1
thread	#2

thread	#3

What new since 1.6?
• Tracing subsystem integrated
• .DYLD interpose implemented
• Trace format switched to binary

Todos:
• Measuring CPU time taken by non-GTasked threads

Thank you!
Any questions?

