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• I tried to make this speech more fun than previous one



GStreamer Instruments

github.com/kirushyk/gst-instruments



What do we want to inspect?
• Elements work
• Data pulling and pushing between elements



Abstraction in optimizations
• Let’s say we want calculate arithmetical mean for set of values:
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Abstraction in optimizations
• Let’s say we want to convert 4K RGB video stream at 120 FPS 

to 30 FPS Full HD YUV.
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Pipeline is Abstraction
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Chip or Tag:
Abstractions for Instruction Pointer
• There is a thing named Program Counter
• Processors have Instruction Pointer Register



Abstractions for Instruction Pointer



Instruction Pointer Abstraction
• We can travel via gotos or ifs
• We can call procedures
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Instruction Pointer Abstraction
• OS can switch processes
• But we shouldn’t care about 

this, no goto help needed
• We may have multiple 

threads on single core
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Pipeline is Abstraction
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Upstream / Downstream
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• Is there goto somewhere?
• No, function calls!



Upstream / Downstream
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Threads’ realms
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Threads’ realms
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General Idea
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Way to trace events in running app
• LD_PRELOAD
• DYLD_INSERT_LIBRARIES + symbol interpose
• GStreamer Tracing Subsystem



Components of GStreamer Instruments
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Trick with Linux dynamic linker
• Create .so library containing functions with same names 

(gst_pad_push, gst_pad_pull_range, etc.)
• That functions can call original ones loaded via dlsym
• Run binary setting LD_PRELOAD environment variable



Trick with Linux dynamic linker
wrapper_function()
{

start = ⏱
log_event (ENTERINTOELEMENT, start)
original_function()
end = ⏱
duration = end - start
log_event (EXITFROMELEMENT, duration)

}



Trick with Linux dynamic linker
Problems:
• No statically-linked functions calls intercepted
• No way to subtract GTask-related work from upstack time
• No way to measure how many time pulling/pushing takes



Trick with macOS Dynamic Linker
Two kinds of DLLs on Mac:
• Bundle (.bundle or .so)
• Dynamic Library (.dylib)



Trick with macOS Dynamic Linker
• DYLD_INSERT_LIBRARIES instead of LD_PRELOAD
• Set DYLD_FORCE_FLAT_NAMESPACE



Trick with macOS Dynamic Linker

Statically link to library with functions we want to wrap +

# define INTERPOSE(_replacment, _replacee) \

__attribute__ ((used)) static struct { const void* replacment; const void* replacee; } _interpose_##_replacee \

__attribute__ ((section ("__DATA,__interpose"))) = { (const void*)(unsigned long)&_replacment, (const
void*)(unsigned long)&_replacee };

INTERPOSE (lgi_pad_push, gst_pad_push);

INTERPOSE (lgi_pad_push_list, gst_pad_push_list);

INTERPOSE (lgi_pad_push_event, gst_pad_push_event);

INTERPOSE (lgi_pad_pull_range, gst_pad_pull_range);

INTERPOSE (lgi_element_set_state, gst_element_set_state);

INTERPOSE (lgi_element_change_state, gst_element_change_state);



Trick with macOS Dynamic Linker

Problems:
•We have no enter time in stack
•We have no some hooks we want J



Using Tracing Subsystem
• Create library which listens for hooks to be hit

gst_tracing_register_hook (tracer, "pad-push-pre",

G_CALLBACK (do_push_buffer_pre));

gst_tracing_register_hook (tracer, "pad-pull-range-pre",

G_CALLBACK (do_pull_range_pre));

• Run program setting GST_TRACERS environment variable



Interesting events to log
Most interesting:
• Thread entered element
• Thread exited element
Also (less interesting):
• Hierarchy discovered (auxiliary event)
• Data sent (to measure data flows)



What can we measure?
• Thread execution time
• CPU cycles
• Real time spent



Thread ExecutionTime

• thread_info (…, THREAD_EXTENDED_INFO, …, …)
• clock_gettime (CLOCK_THREAD_CPUTIME_ID, …)
• GetThreadTimes (…, …, …, …, …)
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Data Model
• Usually, no elements still alive when we do analysis
• Elements have no date of birth and death
• Element’s address can be used as identifier...
• But theoretically new element can be created at same address
• I didn’t think about names a lot



Data Model
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• Element #1 ENTER
• Element #2 ENTER
• Element #3 ENTER
• Element #3 EXIT
• Element #2 EXIT
• Element #1 EXIT
• Element #1 ENTER
• ...



Algorithm
• Read ENTER / EXIT events one by one
• Detect & add new Elements and Threads to DM
For ENTER events:
• Log thread time we were upstack
• Log element enters
For EXIT events
• Find corresponding ENTER
• Log time we were in element and subtract downstack time



Threads outside GThreadPool & GstTask
• Wrap thread creation
• Assign created threads to corresponding elements
• When pushing / pulling, take a look on execution time of each 

thread assigned to element



Third-party thread pools



Threads’ realms
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What new since 1.6?
• Tracing subsystem integrated
• .DYLD interpose implemented
• Trace format switched to binary



Todos:
• Measuring CPU time taken by non-GTasked threads



Thank you!
Any questions?


