
How to work with dynamic 
pipelines using GStreamer

11-12 October 2016
Berlin

Conference 2016

Jose A. Santos
santoscadenas@gmail.com



2

About me

José Antonio Santos Cadenas

● Software Engineer

● Telematic Systems Master's

● Kurento Media Server (KMS) manager

● santoscadenas@gmail.com



Gstreamer static pipelines

● gst-launch
– gst-launch-1.0 filesrc location=sample.mp4 ! 

qtdemux ! avdec_h264 ! queue ! vp8enc ! 
webmmux ! filesink location=sample.webm

● This creates a complex media pipelie 
that transcodes

● Easy to be created



Gstreamer dynamic elements

● Gstreamer already has dynamic elements 
that simplify the creation of some dynamic 
pipelines
– autovideosrc

– autovideosink

– decodebin

– playbin

● Previous pipeline will be like this
– gst-launch-1.0 filesrc location=sample.mp4 ! decodebin ! 

vp8enc ! webmmux ! filesink location=sample.webm



Dynamic pipelines not 
dependent on media (I)
● Previous elments allow to create 

dynamic pipelines dependent on 
media flow, not on external 
conditions

● For example: adding an replacing 
elements depending on user actions



Dynamic pipelines not 
dependent on media (II)
● Creating this applications requires a 

deep understanding of GStreamer:
– How media flows between pads

– How are the negotiations done

– How streaming thread works

– How probes work



Adding and removing 
elements while playing
● Working with this example: 

https://github.com/jcaden/gst-dynamic-examples

● The wrong way:
directly calling gst_pad_unlink

● Problems:
Streaming threads continues pushing buffers events and 
queries

Produce a deadlock if the streaming thread was running 
into elements that are being removed

● Conclusion: fails depending on race conditions



Adding and removing 
elements while playing
● The correct way:

using a probe waiting for the pad to be idle

● How it works:
Probe is called when the pad is not pushing 
media and is guaranteed that no media will be 
flowing while idle callbacks are being called

● Conclusion: Works always even if the 
disconnection time is long



Adding elements after a tee

● Tee takes care of disconnected pads
● Nevertheless, it is a good idea to 

handle connection of elements into 
idle or block callbacks to avoid 
problems while changing elements 
states or during negotiation



Be carefull with negotiations

● When connecting elements after a 
tee, you have to be aware of the fact 
that a negotiation will happen, and 
this negotiation could affect other 
branches

● You have to add capsfilter or 
converter to ease the negotiation



Removing elements 

● Some times is important to allow 
elements to process all the queued 
buffers. (eg: when recording)

● Once disconnection is done, EOS has 
to be sent and waited at the end of 
the pipeline
– If you send the event but not wait, you don’t 

have guarantees that the event is really 
processed because there can be queues 



Advices for live pipelines 

● When working with live pipelines, 
where realtime is important elements 
should be configured to work as much 
fast as possible (see encoders 
configuration in sample program)

● Add queues to separate process in 
different threads



Remember 

● Dynamic pipeline are not an easy tast, 
understand what to attemp to do and 
the consequences on other parts of the 
pipeline

● Block pads before disconnecting
● Sync state of new elements before 

connecting
● Always connect sink elements firts to 

avoid media leaks



Thank you

Suggestions, comments and complains:
santoscadenas@gmail.com

http://www.kurento.org
http://www.github.com/kurento
info@kurento.org
Twitter: @kurentoms

http://www.nubomedia.eu 

http://www.fi-ware.org 

http://ec.europa.eu 


	Slide 1
	What’s WebRTC
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

