How to work with dynamic
pipelines using GStreamer

||
ﬂ.l..
= NUBOMEDIA
—

HKUR=ENTO

santoscadenas@gmail.com

About me

José Antonio Santos Cadenas
* Software Engineer
 Telematic Systems Master's
 Kurento Media Server (KMS) manager

* santoscadenas@gmail.com

'

~~gstreamer 2 W <RURSNTO

Gstreamer static pipelines

e gst-launch

- gst-launch-1.0 filesrc location=sample.mp4 !
gtdemux ! avdec h264 ! queue ! vp8enc !
webmmux ! filesink location=sample.webm

 This creates a complex media pipelie
that transcodes

« Easy to be created

'
—_—
P

g W <RURSNTO

Gstreamer dynamic elements

« Gstreamer already has dynamic elements
that simplify the creation of some dynamic
pipelines
- autovideosrc
- autovideosink
- decodebin
- playbin

* Previous pipeline will be like this

- gst-launch-1.0 filesrc location=sample.mp4 ! decodebin !
vp8enc ! webmmux ! filesink location=sample.webm

'
'

~g W <RURSNTO

Dynamic pipelines not
dependent on media (I)

 Previous elments allow to create
dynamic pipelines dependent on
media flow, not on external
conditions

 For example: adding an replacing
elements depending on user actions

g W <RURSNTO

Dynamic pipelines not
dependent on media (ll)

e Creating this applications requires a
deep understanding of GStreamer:

How media flows between pads
How are the negotiations done
How streaming thread works
How probes work

W <RURSNTO

Adding and removing
elements while playing

« Working with this example:
https://github.com/jcaden/gst-dynamic-examples
 The wrong way:
directly calling gst pad_unlink

e Problems:

Streaming threads continues pushing buffers events and
queries

Produce a deadlock if the streaming thread was running
into elements that are being removed

» Conclusion: fails depending on race conditions

e’
'

~g W <RURSNTO

Adding and removing
elements while playing
 The correct way:

using a probe waiting for the pad to be idle

e How It works:

Probe is called when the pad is not pushing
media and is guaranteed that no media will be
flowing while idle callbacks are being called

« Conclusion: Works always even if the
disconnection time is long

'
—_—
P

g W <RURSNTO

Adding elements after a tee

e Tee takes care of disconnected pads

 Nevertheless, it is a good idea to
handle connection of elements into
idle or block callbacks to avoid
problems while changing elements
states or during negotiation

g W <RURSNTO

Be carefull with negotiations

« When connecting elements after a
tee, you have to be aware of the fact
that a negotiation will happen, and
this negotiation could affect other
branches

« You have to add capsfilter or
converter to ease the negotiation

g W <RURSNTO

Removing elements

« Some times is important to allow
elements to process all the queued
buffers. (eg: when recording)

e Once disconnection is done, EOS has
to be sent and waited at the end of
the pipeline
- |If you send the event but not wait, you don’t

have guarantees that the event is really
processed because there can be queues

g W <RURSNTO

Advices for live pipelines

« When working with live pipelines,
where realtime is important elements
should be configured to work as much
fast as possible (see encoders
configuration in sample program)

 Add queues to separate process in
different threads

g W <RURSNTO

Remember

 Dynamic pipeline are not an easy tast,
understand what to attemp to do and
the consequences on other parts of the
pipeline

« Block pads before disconnecting

« Sync state of new elements before
connecting

« Always connect sink elements firts to
avoid media leaks

'
—_—
P

g W <RURSNTO

Thank you

http://www.nubomedia.eu

http://www.kurento.org ®) Fl
http://www.github.com/kurento -
info@kurento.org http://www.fi-ware.org
Twitter: @kurentoms

EuRc#ian CoMiiamic

http://ec.europa.eu

Suggestions, comments and complains:
santoscadenas@gmail.com

	Slide 1
	What’s WebRTC
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

