
Smooth playback of
adaptive video streams on
Raspberry Pi with gst-mmal

John Sadler,

Krzysztof Konopko,

Tomasz Szkutkowski

YouView TV Ltd.

The usual things really:

• Efficient handling of H.264 & MPEG-2 video
• Judder-free playback
• Proper A/V sync
• Smooth representation changes on adaptive streams
• Decent quality deinterlacing
• Efficient scaling and positioning of video window
• Fancy GL transformations not a priority
• Wanted to avoid ending-up with a single “blob” element

STB-like use cases on Raspberry Pi (2) “toy” platform

What were we trying to achieve?

Did we try gst-omx?

Yes, but we had some issues:

• Performance with glimagesink was not good (gst 1.6.0). Dropped frames
and stuttering with 1080p streams

• Works much better with eglglessink from gst 1.2 - after patching for
y-flip

• But, hangs-up on representation-change when playing adaptive streams
• Missing accelerated deinterlacing (s/w deinterlace not fast enough)

 For more on gst-omx, see [1]

• Tried hacking a new omxvideosink element
• Worked quite well for non-adaptive streams, but still some issues:

• Splitting elements awkward due to OMX tunnelling
• Dynamic reconfiguration very tricky to get right due to OMX state machine
• Some issues with A/V sync & clocking

• Problems are really with OMX itself, more than gst-omx
• After much fiddling, we reluctantly gave up on OMX (for video)
• Then a question on RPi forums [2] pointed us to MMAL...

So, we tried extending gst-omx...

So what’s this MMAL thing?

• Multi-Media Abstraction Layer from Broadcom
• Host-side interface to VideoCore multimedia components
• Based on the concept of components, ports and buffer headers

• Component -> Element, Port -> Pad
• Supports tunnelled configuration like OMX
• Also supports “opaque buffers” via userspace “buffer-headers”

• Buffer headers are allocated by upstream elements & refcounted
• Headers point to the “real” buffers in VC memory
• GST elements pass buffers between MMAL components by passing headers
• Makes it easier to split-out elements - no need to fake data-flow (like in

tunneled case)
• For more on MMAL, see online docs [3]

Current Elements

• Video decode: - e.g. mmalh264dec
• H.264
• MPEG-1, MPEG-2
• VC-1 , WMV1,2,3
• VP6,8

• Deinterlace - mmaldeinterlace
• Uses “image_fx” VC component

• Video Sink - mmalvideosink
• Uses VC-side clock & scheduler for smooth playback

• GL Uploader - mmalglupload
• Use with glimagesinkelement
• Experimental - use mmalvideosink instead for best results

A few challenges we had to overcome

• VSync-aligned presentation & Pipeline/HDMI clock jitter
• Solution: use VC Video Scheduler & Clock to pace final presentation

• GST & VC clock drift
• Solution: video sink provides GST clock samples to VC clock component

• MMAL doesn’t like resizing buffers on rep change
• Solution: always size buffers for max 1080

• Thread-safety in MMAL header refcounting
• Solution: reimplemented those parts with atomics for now

A few outstanding issues

• Needs a good testsuite!
• Transition between progressive and interlaced representations is not as

smooth as we’d like
• Deinterlacer could be smarter:

• Doesn’t always correctly detect mode
• Image_fx is configured with undocumented “magic numbers”

• Video codecs other than H.264, MPEG-2 not well tested
• GL support could be improved
• No audio elements - OMX is fine for our audio needs
• Other components could be implemented - e.g. camera, encode,

scaling/resize

OK, that’s it. Thanks for listening!

Source-code available on GitHub:

https://github.com/youviewtv/gst-mmal

Feedback & contributions welcome!

References:

[1] https://cgit.freedesktop.org/gstreamer/gst-omx

[2] https://www.raspberrypi.org/forums/viewtopic.php?f=70&t=127842

[3] http://www.jvcref.com/files/PI/documentation/html/

https://github.com/youviewtv/gst-mmal
https://github.com/youviewtv/gst-mmal
https://cgit.freedesktop.org/gstreamer/gst-omx
https://www.raspberrypi.org/forums/viewtopic.php?f=70&t=127842
http://www.jvcref.com/files/PI/documentation/html/

