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Introduction
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Who?

● Long-term GStreamer core developer and maintainer
since 2006

● Did the last few GStreamer releases and probably touched 
every piece of code by now

● One of the founders of Centricular Ltd
– Consultancy offering services around GStreamer, graphics and 

multimedia related software
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What?

● We're going to talk about how to synchronize media between 
multiple devices over the network, in specific
– Where is this useful? Scenarios

– Clocks, why and which?

– How to transport the media?

– How to synchronise the media on different devices?

– Set up of the relevant GStreamer elements

– Interoperability with other solutions out there
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Scenarios
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Synchronised multi-room playback
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Live mixing and recording

CC-BY-2.0, Nayu Kim
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Clocks
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Clocks

● For synchronising anything we need clocks
● No two clocks in the universe run at the same rate or show the 

same time
● We need a way to approximate the same clock on multiple 

devices and teach GStreamer how to use such a clock to 
synchronise media
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GStreamer Clocks

● Every pipeline has a single (master) clock
– Used for synchronising all media in that pipeline

– Usually used in sinks and live sources

● Automatically selected for you by default
– But can be manually set too

● Used to generate the “running time” of the pipeline
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GStreamer Clocks
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GStreamer Clocks

● Each clock is a GstClock subclass
– Needed: get_internal_time() virtual method that returns the current internal time of the 

clock in nanoseconds

– Requirement: always running forwards

● Infrastructure for slaving one clock to another
– Estimating relative clock rates and offsets between the two

– Allows translating times between both clocks

● Idea: Create a clock that bases its internal time on observations from time on 
another machine on the network, slave it to the local system clock
– Might've used that in the past already: this is how NTP is used by most people
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GStreamer Net & NTPv4 Clock

● NetClock existing since around 2005
● Custom protocol similar to NTPv4

– UDP messages sent between client and server

– Client “asks” the server for the current time & estimates the round-trip-time

– Uses both the estimate the current time at packet receival

● NTPv4 (RFC4330) client clock since 1.6
– Shares most of the code with the NetClock

● Tricky part: Filtering to handle networks with fluctuating RTTs
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NTPv4 Clock
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PTP Clock

● PTP (IEEE1588-2008) client clock since 1.6
● For local systems that require higher accuracy than NTP

– μs to ns range, NTP usually in the ms range

– Possibility of driver and network hardware support to increase accuracy

● For distributing time to many devices in a local network without much overhead
– Using multicast and only doing RTT measurements sometimes
– Less robust for networks with fluctating RTTs (WiFi!)

● Distributed algorithm to automatically select the “best” clock of all available in 
the network
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PTP Clock
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GPS Clock

● GPS also needs all devices synchronised
● Could implement a GstClock around a GPS device

● Does not exist yet! Any volunteers?



18 Centricular

Media Transport
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Possible Choices

● HTTP
– Easier to do buffering, TCP retransmissions

– Not a problem for firewalls usually

– Not ideal for low-latency live streams

● DASH/HLS
– Mostly the same as HTTP

– Easy CDN usage, multiple bitrates/resolutions/etc

● RTP/RTSP
– Great for low-latency streaming

– We're going to focus on this for now
● others work less “automatic”. Ask me later!
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RTP/RTSP

● GStreamer RTSP server and source very easy to set up
– “Write a server in 6 SLOC”

– Easy to customize for everything we need here

● Stream configuration exchange via SDP and a HTTP-style 
request/reply protocol

● Media streaming via RTP
– Custom RTP setup possible with GStreamer if needed, flexible enough for 

everything including WebRTC

● RTP has clearly defined timing semantics
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Synchronisation
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RTP

● Each packet has a timestamp
– Random offset for each stream, based on the sender clock

● Each packet has a sequence number
– Monotonously increasing with random starting point

● Usually transmitted in real-time
● Allows to synchronise every stream, detect packet loss and 

handle packet reordering
● Mappings for every major codec and metadata schemes
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RTP

● GStreamer default RTP time handling in rtpjitterbuffer
– Take first packets timestamp and arrival time as “base”

– Estimate sender clock based on network jitter, packet timestamps, 
packet arrival times

– Slave estimated sender clock to the pipeline clock

● Not useful by itself for inter-device or even inter-stream 
synchronisation
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RTCP

● Bidirectional communication between sender and receiver
● Basic case

– Sender report to the receivers, receiver reports to the sender

– Sent/received packets, packet loss, RTTs

● Can be extended by other feedback / control (e.g. RFC4585)
– Retransmissions, keyframe requests, …

– Application specific extensions
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RTCP

● Interesting part for synchronisation
– NTP timestamp and corresponding RTP timestamp in SR

– Not necessarily based on an actual NTP clock

– RTP timestamp interpolated for the NTP time when RTCP packet is sent

● Allows inter-stream synchronisation
– Default rtpbin behaviour

● Allows inter-device synchronisation
– All devices need to agree on the same “NTP” clock by some other means

– Not the default mode! Details later
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RTP Header Extension

● RFC6051 defines an RTP header extension for carrying NTP 
timestamp
– Allows to create a direct NTP ↔ RTP timestamp mapping

– Allows immediate synchronisation before RTCP

– Allows mapping for each RTP timestamp instead of just every now and then 
via RTCP

● Could create the same for PTP
● Main problem is still

– Every device needs to agree on the same clock by some other means
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RFC7273

● Finally solves the remaining problem
– But is not implemented in GStreamer… yet!

● Defines SDP fields for
– Media clock that is used for timestamping packets

– Offset between clock epoch and RTP timestamp

– Supports NTP, PTP and others

● Plan is to implement it some time later this year
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Setup of GStreamer elements
for RTCP-based synchronisation
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rtpbin

● “ntp-sync”: gboolean
– Overrides rtpjitterbuffer behaviour to produce output timestamps 

based on the NTP clock times instead of packet arrival times

– Only useful on receivers
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rtpbin

● “ntp-time-source”: enum
– Useful for sender and receiver

– NTP: Real NTP time based on real-time clock (NTP clock epoch)

– UNIX: Same as NTP but using the UNIX epoch

– Running time: Pipeline's running time

– Clock time: Pipeline's clock time (running time + base time)
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rtpbin

● “buffer-mode”: enum
– Only useful on receivers

– None: Uses RTP timestamps, starting from 0

– Slave: Sender clock estimation

– Synced: Uses RTP timestamps, starts at arrival time of first packet
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rtpbin

● “rtcp-sync-send-time”: gboolean
– Only useful on senders

– Use capture or send time for the NTP ↔ RTP time mapping in RTCP

– No difference for non-live pipelines

– Latency is the difference for live pipelines

– Set to FALSE if receiver and sender pipelines should be 
synchronised
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pipeline

● gst_pipeline_use_clock()

– Force usage of a specific clock

– Use same network clock on receivers and senders if not using 
RFC7273 integration

● gst_pipeline_set_latency()

– Overrides default pipeline latency handling to use a static latency

– Should be at least the maximum receiver latency
● Network plus decoder plus sink latency!
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Setup Summary

● test-netclock*.c from gst-rtsp-server/examples

● Sender
– Setup netclock provider (server)

– Use system clock for that and the pipeline

– “ntp-time-source”: clock-time

● Receiver
– Setup netclient clock with sender's server

– Use that for the pipeline and set 500ms fixed latency

– “ntp-time-source”: clock-time, “ntp-sync”: TRUE, “buffer-mode”: synced

● Easily get < 1 frame synchronisation between receivers
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Interoperability
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RTCP

● NTP based synchronisation will work if
– Sender and receiver agree on the same clock by some other means

● Works with many 3rd party solutions
– Sometimes possible to configure an NTP server to use in senders

– Completely based on RTP RFC, nothing else

● Synchronisation based on send or capture time usually 
undefined in other solutions
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Ravenna / AES-67

● IP based audio broadcasting standard
● Raw audio via RTP
● PTP clock
● RFC7273 for media clock distribution

● Supported by many professional broadcasting applications
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BBC IPStudio

● IP based live studio, broadcasting R&D project
● Video and audio via RTP
● RFC7273 and PTP clock
● Extensions for additional metadata
● Compatible with AES-67
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SMPTE 2022 / 2059

● IP based video transport standard
– Remote, real-time video production

● RTP for audio / video
– “SDI over IP”

● PTP clock
● FEC
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Thanks!

Any questions?
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