
1 Centricular

Synchronised multi-room media playback and 
distributed live media processing and mixing

GStreamer Conference 2015, Dublin

9 October 2015

Sebastian Dröge <sebastian@centricular.com>

mailto:sebastian@centricular.com


2 Centricular

Introduction



3 Centricular

Who?

● Long-term GStreamer core developer and maintainer
since 2006

● Did the last few GStreamer releases and probably touched 
every piece of code by now

● One of the founders of Centricular Ltd
– Consultancy offering services around GStreamer, graphics and 

multimedia related software



4 Centricular

What?

● We're going to talk about how to synchronize media between 
multiple devices over the network, in specific
– Where is this useful? Scenarios

– Clocks, why and which?

– How to transport the media?

– How to synchronise the media on different devices?

– Set up of the relevant GStreamer elements

– Interoperability with other solutions out there



5 Centricular

Scenarios



6 Centricular

Synchronised multi-room playback



7 Centricular

Live mixing and recording

CC-BY-2.0, Nayu Kim



8 Centricular

Clocks



9 Centricular

Clocks

● For synchronising anything we need clocks
● No two clocks in the universe run at the same rate or show the 

same time
● We need a way to approximate the same clock on multiple 

devices and teach GStreamer how to use such a clock to 
synchronise media



10 Centricular

GStreamer Clocks

● Every pipeline has a single (master) clock
– Used for synchronising all media in that pipeline

– Usually used in sinks and live sources

● Automatically selected for you by default
– But can be manually set too

● Used to generate the “running time” of the pipeline



11 Centricular

GStreamer Clocks



12 Centricular

GStreamer Clocks

● Each clock is a GstClock subclass
– Needed: get_internal_time() virtual method that returns the current internal time of the 

clock in nanoseconds

– Requirement: always running forwards

● Infrastructure for slaving one clock to another
– Estimating relative clock rates and offsets between the two

– Allows translating times between both clocks

● Idea: Create a clock that bases its internal time on observations from time on 
another machine on the network, slave it to the local system clock
– Might've used that in the past already: this is how NTP is used by most people



13 Centricular

GStreamer Net & NTPv4 Clock

● NetClock existing since around 2005
● Custom protocol similar to NTPv4

– UDP messages sent between client and server

– Client “asks” the server for the current time & estimates the round-trip-time

– Uses both the estimate the current time at packet receival

● NTPv4 (RFC4330) client clock since 1.6
– Shares most of the code with the NetClock

● Tricky part: Filtering to handle networks with fluctuating RTTs



14 Centricular

NTPv4 Clock



15 Centricular

PTP Clock

● PTP (IEEE1588-2008) client clock since 1.6
● For local systems that require higher accuracy than NTP

– μs to ns range, NTP usually in the ms range

– Possibility of driver and network hardware support to increase accuracy

● For distributing time to many devices in a local network without much overhead
– Using multicast and only doing RTT measurements sometimes
– Less robust for networks with fluctating RTTs (WiFi!)

● Distributed algorithm to automatically select the “best” clock of all available in 
the network



16 Centricular

PTP Clock



17 Centricular

GPS Clock

● GPS also needs all devices synchronised
● Could implement a GstClock around a GPS device

● Does not exist yet! Any volunteers?



18 Centricular

Media Transport



19 Centricular

Possible Choices

● HTTP
– Easier to do buffering, TCP retransmissions

– Not a problem for firewalls usually

– Not ideal for low-latency live streams

● DASH/HLS
– Mostly the same as HTTP

– Easy CDN usage, multiple bitrates/resolutions/etc

● RTP/RTSP
– Great for low-latency streaming

– We're going to focus on this for now
● others work less “automatic”. Ask me later!



20 Centricular

RTP/RTSP

● GStreamer RTSP server and source very easy to set up
– “Write a server in 6 SLOC”

– Easy to customize for everything we need here

● Stream configuration exchange via SDP and a HTTP-style 
request/reply protocol

● Media streaming via RTP
– Custom RTP setup possible with GStreamer if needed, flexible enough for 

everything including WebRTC

● RTP has clearly defined timing semantics



21 Centricular

Synchronisation



22 Centricular

RTP

● Each packet has a timestamp
– Random offset for each stream, based on the sender clock

● Each packet has a sequence number
– Monotonously increasing with random starting point

● Usually transmitted in real-time
● Allows to synchronise every stream, detect packet loss and 

handle packet reordering
● Mappings for every major codec and metadata schemes



23 Centricular

RTP

● GStreamer default RTP time handling in rtpjitterbuffer
– Take first packets timestamp and arrival time as “base”

– Estimate sender clock based on network jitter, packet timestamps, 
packet arrival times

– Slave estimated sender clock to the pipeline clock

● Not useful by itself for inter-device or even inter-stream 
synchronisation



24 Centricular

RTCP

● Bidirectional communication between sender and receiver
● Basic case

– Sender report to the receivers, receiver reports to the sender

– Sent/received packets, packet loss, RTTs

● Can be extended by other feedback / control (e.g. RFC4585)
– Retransmissions, keyframe requests, …

– Application specific extensions



25 Centricular

RTCP

● Interesting part for synchronisation
– NTP timestamp and corresponding RTP timestamp in SR

– Not necessarily based on an actual NTP clock

– RTP timestamp interpolated for the NTP time when RTCP packet is sent

● Allows inter-stream synchronisation
– Default rtpbin behaviour

● Allows inter-device synchronisation
– All devices need to agree on the same “NTP” clock by some other means

– Not the default mode! Details later



26 Centricular

RTP Header Extension

● RFC6051 defines an RTP header extension for carrying NTP 
timestamp
– Allows to create a direct NTP ↔ RTP timestamp mapping

– Allows immediate synchronisation before RTCP

– Allows mapping for each RTP timestamp instead of just every now and then 
via RTCP

● Could create the same for PTP
● Main problem is still

– Every device needs to agree on the same clock by some other means



27 Centricular

RFC7273

● Finally solves the remaining problem
– But is not implemented in GStreamer… yet!

● Defines SDP fields for
– Media clock that is used for timestamping packets

– Offset between clock epoch and RTP timestamp

– Supports NTP, PTP and others

● Plan is to implement it some time later this year



28 Centricular

Setup of GStreamer elements
for RTCP-based synchronisation



29 Centricular

rtpbin

● “ntp-sync”: gboolean
– Overrides rtpjitterbuffer behaviour to produce output timestamps 

based on the NTP clock times instead of packet arrival times

– Only useful on receivers



30 Centricular

rtpbin

● “ntp-time-source”: enum
– Useful for sender and receiver

– NTP: Real NTP time based on real-time clock (NTP clock epoch)

– UNIX: Same as NTP but using the UNIX epoch

– Running time: Pipeline's running time

– Clock time: Pipeline's clock time (running time + base time)



31 Centricular

rtpbin

● “buffer-mode”: enum
– Only useful on receivers

– None: Uses RTP timestamps, starting from 0

– Slave: Sender clock estimation

– Synced: Uses RTP timestamps, starts at arrival time of first packet



32 Centricular

rtpbin

● “rtcp-sync-send-time”: gboolean
– Only useful on senders

– Use capture or send time for the NTP ↔ RTP time mapping in RTCP

– No difference for non-live pipelines

– Latency is the difference for live pipelines

– Set to FALSE if receiver and sender pipelines should be 
synchronised



33 Centricular

pipeline

● gst_pipeline_use_clock()

– Force usage of a specific clock

– Use same network clock on receivers and senders if not using 
RFC7273 integration

● gst_pipeline_set_latency()

– Overrides default pipeline latency handling to use a static latency

– Should be at least the maximum receiver latency
● Network plus decoder plus sink latency!



34 Centricular

Setup Summary

● test-netclock*.c from gst-rtsp-server/examples

● Sender
– Setup netclock provider (server)

– Use system clock for that and the pipeline

– “ntp-time-source”: clock-time

● Receiver
– Setup netclient clock with sender's server

– Use that for the pipeline and set 500ms fixed latency

– “ntp-time-source”: clock-time, “ntp-sync”: TRUE, “buffer-mode”: synced

● Easily get < 1 frame synchronisation between receivers



35 Centricular

Interoperability



36 Centricular

RTCP

● NTP based synchronisation will work if
– Sender and receiver agree on the same clock by some other means

● Works with many 3rd party solutions
– Sometimes possible to configure an NTP server to use in senders

– Completely based on RTP RFC, nothing else

● Synchronisation based on send or capture time usually 
undefined in other solutions



37 Centricular

Ravenna / AES-67

● IP based audio broadcasting standard
● Raw audio via RTP
● PTP clock
● RFC7273 for media clock distribution

● Supported by many professional broadcasting applications



38 Centricular

BBC IPStudio

● IP based live studio, broadcasting R&D project
● Video and audio via RTP
● RFC7273 and PTP clock
● Extensions for additional metadata
● Compatible with AES-67



39 Centricular

SMPTE 2022 / 2059

● IP based video transport standard
– Remote, real-time video production

● RTP for audio / video
– “SDI over IP”

● PTP clock
● FEC



40 Centricular

Thanks!

Any questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

