
Interactive video playback and capture in the Processing
Language via GStreamer

Andrés Colubri
!

GStreamer Conference 2015
Dublin, Ireland

1. Quick intro to Processing
2. The video library (and gstreamer-java)
3. The future (is now): moving to GStreamer 1.0

Overview of the talk

What is Processing?

Processing is a programming language and software
sketchbook for learning how to code within the context

of the visual arts

• It was initiated by Ben Fry and Casey Reas in 2001
at the MIT Media Lab

• Their goal was to create a programming tool to
make code more accessible to artists and designers

• It’s built around the idea of “code sketching” by
implementing visual ideas and iterating quickly

• It is based on Java to reach a compromise between
language simplicity, performance, and portability

• http://www.processing.org/ for more details!

http://www.processing.org/

Hello, world! in Processing

Path 00. Casey Reas (2001)

Process 6. Casey Reas (2005)

Valence. Ben Fry (1999-2002)

Isometric Blocks. Ben Fry (2002-2004)

unnamed soundsculpture (2013)
https://vimeo.com/38840688

https://vimeo.com/38840688

• Thousands of people use the software every day for
teaching and production

• http://forum.processing.org/
• https://github.com/processing
• http://p5js.org/
• http://openprocessing.org/
• http://fyprocessing.tumblr.com/
• Related projects: Arduino, openFrameworks, …

Community

http://forum.processing.org/
https://github.com/processing
http://p5js.org/
http://fyprocessing.tumblr.com/

Video in Processing

(Image by Elie Zananiri)

• Processing has a modular architecture that makes it
easy to extend its core functionality through
libraries

• Since early versions (pre1.0), Processing included a
video library

• This library follows the principles of the core API:
immediate visual feedback, simple naming
conventions, circumscribed functionality

• It was originally based on QuickTime for Java :-(

demo of the video library

• It was not cross-platform, as a consequence the
video library did not work on Linux

• It was very slow: pixel buffers were copied from
QuickTime over to Java

• You needed to install QuickTime on Windows

Already in 2007, QuickTime for Java had many
disadvantages:

Enter gstreamer-java (2007 - present)!

• gstreamer-java is a set of Java bindings for
GStreamer 0.10

• It is based on Java Native Access (JNA)
• It was initiated by Wayne Meissner in early 2007
• Levente Farkas, Tal Shalif, and David Hoyt made

important contributions early on and maintained the
project after Wayne’s departure

• I added a few components that allowed to extract
the video frames into the Java application, and re-
wrote the video library in Processing to use
gstreamer-java instead of QuickTime for Java

a few projects using video:
Videorative Portraits: https://vimeo.com/32760578

The Life in a Day Gallery: https://www.youtube.com/watch?v=g4y6cppFxgo
Mass Rhythm: https://vimeo.com/105419121

Facial Distortions: https://vimeo.com/3688931
Incarceration-vacation: https://vimeo.com/34311454

https://vimeo.com/32760578
https://www.youtube.com/watch?v=g4y6cppFxgo
https://vimeo.com/105419121
https://vimeo.com/3688931
https://vimeo.com/34311454

Let’s take a deeper look into gstreamer-java

• It uses JNA, so no need to write glue code in C, like
it is the case with JNI

• However, the object hierarchy in GStreamer,
starting from GLib, is duplicated manually in Java

• It comprises of around 300 Java classes.

Element

GstObject

GObject

RefCountedObject

NativeObject

Handle

NativeValue

Object

GObjectAPI

GstObjectAPI

native libs

GNative

low	
 level

gstreamer

…

Sample application using Swing

VideoComponent extends javax.swing.JComponent,and…

Device probing to list cameras in Processing

Last, but not least, we needed GStreamer binaries for
Windows and Mac OS X

• We managed to build them using MacPorts on Mac,
cross-compilation with mingw64 on Linux to
output Windows .dlls

• These builds of 0.10 have been in use since
Processing 1.x until today…

GStreamer 1.0: The future is now…

We have 3 options to transition to GStreamer 1.x:

1. Writing a minimal binding only for Processing, using JNI
2. We update gstreamer-java so it works with 1.x
3. We auto-generate the bindings form the .gir files!

https://github.com/gstreamer-java

https://github.com/gstreamer-java

1. Minimal JNI binding, only for Processing

2. Updated JNA bindings, gstreamer1.x-java

• One year ago, GitHub user armouroflight pushed a version of
gstreamer-java mostly compatible with GStreamer 1.0/1.2:

https://github.com/armouroflight/gstreamer1.x-java

!
• Neil C. Smith, also a Processing enthusiast, took

armouroflight’s code and create a more stable version:
!

https://github.com/gstreamer-java/gst1-java-core

https://github.com/armouroflight/gstreamer1.x-java
https://github.com/gstreamer-java/gst1-java-core

We already have a version of the Processing video library
based on gst1-java-core with movie and capture support:

3. Automated binding generation, using gir2java

• This is a project started during GSoC 2014 by Roland
Elek, and co-mentored by Levente Farkas and myself

• It is parser and generator that generates the Java
bindings automatically using GObject Instrospection .gir
files

• It went pretty far: GLib, GObject, Gio, GModule, Gst-1.0,
GstBase-1.0, and GstVideo-1.0 compile without errors
on a recent Linux distro, and it is capable of running a
simple video playback pipeline

https://github.com/gstreamer-java/gir2java

https://github.com/gstreamer-java/gir2java

• Parsing fails non-deterministically with type reference
resolution within a single file.

• Callback parsing and generation not implemented.
• API is not Java-like, it needs another layer on top of the

classes generated by the parser.
• Automatic reference counting is missing.

However, it is not finished…

1. Which approach to choose (I lean towards JNA)
2. OpenGL integration (GL plugins!)
3. Raspberry Pi integration (OpenMAX acceleration?)
4. JavaFX support (what about lightweight

GStreamer being bundled by Oracle with JavaFX)
5. Bundling GStreamer 1.x native libs for OS X and

Windows with the Processing video library

Things left To Do/Discuss

Questions/Comments?

…and thank you!

Thanks to the many contributors and members of the
Processing and GStreamer communities around the world!

