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GStreamer design

● Since 1999 : Direct A-cyclic Graph of processing 
elements

● Hard part
– Keeping that simple design ...
– ... but with optimal underlying processing

● API added to provide information between 
elements to come up with the “best” choice

● Potentially plenty of choices





Choosing the right elements

● First things first
● How do we know what's the best element for:

– A given task ?
– Certain source caps ?
– Certain sink caps ?

● Choice for application
● Decodebin and playbin use same info and logic



The Registry

● For each element, registry will provide:
– Klass : What it can do
– Rank : Ordering amongst similar elements
– Pad Templates

● Direction : sink vs source
● Caps : what it could produce/consume

● No need to instantiate elements



Choosing the right elements

● Given certain caps, ask the registry for elements 
that could consume/output that

● Filter it by Klass (if needed)
● Sorted by rank
● Try elements in that order

– !! GST_STATE_READY (initialize 
device/library)



Negotiating Scheduling

● In READY to PAUSED, (pads of) elements get 
“activated”

● Are we going to work:
– Push-based (default, upstream pushes into 

downstream)
– Pull-based (downstream does random 

access pull from upstream)



Negotiating Scheduling

● Some elements are more efficient in pull-mode 
(demuxers, know how much to pull from which 
offset)

● Some elements might be slow to change position 
if in pull mode (network source elements)

● Some elements might not provide data fast 
enough for real-time (network source elements)





GST_QUERY_SCHEDULING

● Downstream sends query upstream
● Upstream fills in information

– Mode: PUSH and/or PULL
– Flags:

● SEEKABLE
● SEQUENTIAL
● BANDWITH_LIMITED

● Downstream decides whether to configure itself 
in push or pull

● Want to force push-mode ? Queue !
● Pull-mode with a push-mode source ? Queue2 !



Negotiating CAPS

● Before any buffers are pushed, the Caps must be 
specified (GST_EVENT_CAPS)

● They must be fixed (no ambiguity, all fields with 
fixed values)

● There might be several possible caps to use
● How do we end up choosing the “best” fixed caps 

? How do we get that information ?





GST_QUERY_CAPS

● gst_query_new_caps(GstCaps* filter)
● Ask what caps are supported

– Optionally filtered by some other caps 
(source pad template caps)

● Purpose:
– Provide Caps the element can support
– Filtered by Pad Template Caps
– Filtered by (optional) filter caps
– Might be dependent on what downstream 

supports
● Downstream proposes
● Upstream decides



Choosing Caps

● GST_QUERY_CAPS returns:
– GST_CAPS_NONE: no possible solution, 

negotiation fails
– Fixed caps: you have no choice, use those.
– Non-fixed caps: you need to choose from 

that.
● Order of non-fixed caps matters. Ex:

– Video/x-raw,format=I420; video/x-
raw,format=RGBA

– “Downstream would prefer I420”



GST_QUERY_ACCEPT_CAPS

● gst_query_new_accept_caps(GstCaps *caps)
● Will these (fixed) caps be accepted on this pad ?
● Allows checking caps possibilities without 

pushing GST_EVENT_CAPS (which would be too 
late)



Use-case

● Fixed caps element: (decoders,demuxers), there 
is not choice to what they can output.

● Transformation: output caps dependent on input 
caps

– Volume, encoders, videobox, ...
● Dynamic elements: output caps independent 

from input caps
– Videoconvert, audioconvert, ...



Influence caps negotiation

● Capsfilter
● Refuses incompatible GST_EVENT_CAPS
● Filters results of GST_QUERY_CAPS
● Refuses incompatible GST_QUERY_ACCEPT_CAPS
● You can therefore influence what caps are 

negotiated on a given link



Re-using memory

● Elements can share a pool of (pre-allocated/pre-
configured) buffers : GstBufferPool

– Makes processing a lot more efficient
– Can be using special memory they both 

support



GST_QUERY_ALLOCATION

● gst_query_new_allocation(GstCaps *caps, 
gboolean need_pool);

● Returns:
– GstAllocator(s) supported
– GstAllocationParams
– GstBufferPool(s) (if requested)
– GstMeta supported
– ....



Allocation decision

● Upstream gets a potential list of pools, it can then 
pick one and configure it based on downstream 
information (AllocationParams) and upstream 
preferences (min/max buffers, alignment, size,..)

● Upstream knows what GstMeta/GstMemory 
downstream supports

– GstVideoMeta, extra API
– GstMemory, extra direct access to memory

● Downstream proposes
● Upstream decides



Delegating processing

● GstMeta
● Some processing could be avoided or even 

delegated
– Cropping, compositing, audio 

mixing/level, ...
● But can't be expressed with caps, might change 

per buffer, ...
● Enter GstMeta

– Provide transformationinformation per 
buffer

– Let downstream elements handle it (more 
efficiently, or avoid the processing)



Delegating processing

● GST_QUERY_ALLOCATION provides GstMeta 
supported downstream

● Ex:
– Videosink can do “cropping”
– GstVideoCropMeta
– Upstream decoder doesn't need to crop, 

just fills the meta on buffer
– Videosink just uploads, doesn't crop, just 

tells hardware the cropping region
● Downstream proposes
● Upstream decides



But wait ...

● So I can use these optimized paths between 
elements (buffer pools, optimized memory, 
delegating processing ,...) ...

● ... but that's only negotiated once we've chosen 
elements (in PAUSED) ...

● ... what if there were better combination of 
elements (that could delegate everything) ?





And there's more !

● GST_QUERY_ALLOCATION will return supported 
allocator/pool/meta ... for the caps you already 
selected

● What if you could have picked another caps ... 
that provided better allocator/pool/meta ?





GstCapsFeatures

● New in 1.2 : GstCapsFeatures
● Provide additional description to caps

– Memory:GstMemoryTypeName
– Meta:GstMetaAPIName

● Stored in pad templates



GstCapsFeature usage

● Stored in the registry
– Pick a better combination of elements
– Sink supports GL ? Pick a GL decoder !
– Decoder support dma-buf ? Pick a dma-buf 

aware sink !
● Used in Caps Negotiation

– Glimagesink prefers memory:GLMemory, 
memory:EGLImage, 
meta:GstVideoGLTextureUploadMeta

– Upstream elements can pick better/best 
combination (ex: RGBA, but accelerated)



Summary

● Various information exchanged
● As much as possible to make the “best” choice
● Only a walkthrough
● More details in API docs and design docs
● Any Questions ?
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