
GStreamer
-

Negotiate all the things

Edward Hervey – bilboed@bilboed.com

mailto:bilboed@bilboed.com

GStreamer design

● Since 1999 : Direct A-cyclic Graph of processing
elements

● Hard part
– Keeping that simple design ...
– ... but with optimal underlying processing

● API added to provide information between
elements to come up with the “best” choice

● Potentially plenty of choices

Choosing the right elements

● First things first
● How do we know what's the best element for:

– A given task ?
– Certain source caps ?
– Certain sink caps ?

● Choice for application
● Decodebin and playbin use same info and logic

The Registry

● For each element, registry will provide:
– Klass : What it can do
– Rank : Ordering amongst similar elements
– Pad Templates

● Direction : sink vs source
● Caps : what it could produce/consume

● No need to instantiate elements

Choosing the right elements

● Given certain caps, ask the registry for elements
that could consume/output that

● Filter it by Klass (if needed)
● Sorted by rank
● Try elements in that order

– !! GST_STATE_READY (initialize
device/library)

Negotiating Scheduling

● In READY to PAUSED, (pads of) elements get
“activated”

● Are we going to work:
– Push-based (default, upstream pushes into

downstream)
– Pull-based (downstream does random

access pull from upstream)

Negotiating Scheduling

● Some elements are more efficient in pull-mode
(demuxers, know how much to pull from which
offset)

● Some elements might be slow to change position
if in pull mode (network source elements)

● Some elements might not provide data fast
enough for real-time (network source elements)

GST_QUERY_SCHEDULING

● Downstream sends query upstream
● Upstream fills in information

– Mode: PUSH and/or PULL
– Flags:

● SEEKABLE
● SEQUENTIAL
● BANDWITH_LIMITED

● Downstream decides whether to configure itself
in push or pull

● Want to force push-mode ? Queue !
● Pull-mode with a push-mode source ? Queue2 !

Negotiating CAPS

● Before any buffers are pushed, the Caps must be
specified (GST_EVENT_CAPS)

● They must be fixed (no ambiguity, all fields with
fixed values)

● There might be several possible caps to use
● How do we end up choosing the “best” fixed caps

? How do we get that information ?

GST_QUERY_CAPS

● gst_query_new_caps(GstCaps* filter)
● Ask what caps are supported

– Optionally filtered by some other caps
(source pad template caps)

● Purpose:
– Provide Caps the element can support
– Filtered by Pad Template Caps
– Filtered by (optional) filter caps
– Might be dependent on what downstream

supports
● Downstream proposes
● Upstream decides

Choosing Caps

● GST_QUERY_CAPS returns:
– GST_CAPS_NONE: no possible solution,

negotiation fails
– Fixed caps: you have no choice, use those.
– Non-fixed caps: you need to choose from

that.
● Order of non-fixed caps matters. Ex:

– Video/x-raw,format=I420; video/x-
raw,format=RGBA

– “Downstream would prefer I420”

GST_QUERY_ACCEPT_CAPS

● gst_query_new_accept_caps(GstCaps *caps)
● Will these (fixed) caps be accepted on this pad ?
● Allows checking caps possibilities without

pushing GST_EVENT_CAPS (which would be too
late)

Use-case

● Fixed caps element: (decoders,demuxers), there
is not choice to what they can output.

● Transformation: output caps dependent on input
caps

– Volume, encoders, videobox, ...
● Dynamic elements: output caps independent

from input caps
– Videoconvert, audioconvert, ...

Influence caps negotiation

● Capsfilter
● Refuses incompatible GST_EVENT_CAPS
● Filters results of GST_QUERY_CAPS
● Refuses incompatible GST_QUERY_ACCEPT_CAPS
● You can therefore influence what caps are

negotiated on a given link

Re-using memory

● Elements can share a pool of (pre-allocated/pre-
configured) buffers : GstBufferPool

– Makes processing a lot more efficient
– Can be using special memory they both

support

GST_QUERY_ALLOCATION

● gst_query_new_allocation(GstCaps *caps,
gboolean need_pool);

● Returns:
– GstAllocator(s) supported
– GstAllocationParams
– GstBufferPool(s) (if requested)
– GstMeta supported
–

Allocation decision

● Upstream gets a potential list of pools, it can then
pick one and configure it based on downstream
information (AllocationParams) and upstream
preferences (min/max buffers, alignment, size,..)

● Upstream knows what GstMeta/GstMemory
downstream supports

– GstVideoMeta, extra API
– GstMemory, extra direct access to memory

● Downstream proposes
● Upstream decides

Delegating processing

● GstMeta
● Some processing could be avoided or even

delegated
– Cropping, compositing, audio

mixing/level, ...
● But can't be expressed with caps, might change

per buffer, ...
● Enter GstMeta

– Provide transformationinformation per
buffer

– Let downstream elements handle it (more
efficiently, or avoid the processing)

Delegating processing

● GST_QUERY_ALLOCATION provides GstMeta
supported downstream

● Ex:
– Videosink can do “cropping”
– GstVideoCropMeta
– Upstream decoder doesn't need to crop,

just fills the meta on buffer
– Videosink just uploads, doesn't crop, just

tells hardware the cropping region
● Downstream proposes
● Upstream decides

But wait ...

● So I can use these optimized paths between
elements (buffer pools, optimized memory,
delegating processing ,...) ...

● ... but that's only negotiated once we've chosen
elements (in PAUSED) ...

● ... what if there were better combination of
elements (that could delegate everything) ?

And there's more !

● GST_QUERY_ALLOCATION will return supported
allocator/pool/meta ... for the caps you already
selected

● What if you could have picked another caps ...
that provided better allocator/pool/meta ?

GstCapsFeatures

● New in 1.2 : GstCapsFeatures
● Provide additional description to caps

– Memory:GstMemoryTypeName
– Meta:GstMetaAPIName

● Stored in pad templates

GstCapsFeature usage

● Stored in the registry
– Pick a better combination of elements
– Sink supports GL ? Pick a GL decoder !
– Decoder support dma-buf ? Pick a dma-buf

aware sink !
● Used in Caps Negotiation

– Glimagesink prefers memory:GLMemory,
memory:EGLImage,
meta:GstVideoGLTextureUploadMeta

– Upstream elements can pick better/best
combination (ex: RGBA, but accelerated)

Summary

● Various information exchanged
● As much as possible to make the “best” choice
● Only a walkthrough
● More details in API docs and design docs
● Any Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

