
 The never-ending story:
 GStreamer and hardware integration

 GStreamer Conference 2013, Edinburgh
 22 October 2013

 Sebastian Dröge <sebastian@centricular.com>
 Centricular Ltd

 Who is speaking?

 • Sebastian Dröge, long-time GStreamer core developer

 • probably touched every piece of code by now

 • worked on GStreamer for various companies, now at Centricular

 What is this about?

 • how to do hardware integration into GStreamer

 ◦ think of DSPs, GPUs, OpenMAX, OpenGL, VAAPI, …

 • was always a difficult topic, not properly possible
 in 0.10 at all and required hacks everywhere

 • all possible in 1.0, but is a very large topic and
 no high-level documentation. yet!

 What's new in GStreamer 1.0 & 1.2?

 • better memory managment and control

 • arbitrary buffer metadata

 • generic reconfiguration and renegotiation mechanism

 • sharing of arbitrary contexts between elements

 Let's get started with the details

 i will assume that you all know the basics of GStreamer

 I have hardware/APIs that use special memory, help me!

 • GstMemory and GstAllocator are exactly what you need

 • don't worry about crazy hacks like in 0.10, like
 subclassing GstBuffer and praying

 Why two separate types?

 • GstMemory is just an abstract memory object,
 a handle without logic

 • GstAllocator implements allocations and other operations

 • one memory type can be handled by many allocators

 • memory instance knows its corresponding allocator

 But my special memory behaves so different!

 • explicit read/write/exclusive access functions

 • subclasses can implement special API

 • can be unreadable for the CPU, or mappable to behave
 like normal CPU memory, or read-only, or …

 But my memory is really special!

 • No!

 • everything that can be stored in a
 pointer can be handled. really

 • worst case: it's inconvenient

 What if I just need special system memory?

 • GstAllocator allocation has parameters

 ◦ alignment, padding, etc.

 ◦ flags for e.g. physically contiguous memory

 And what's the use of buffers now?

 • just a list of GstMemories and metadata to pass
 between pads

 ◦ timestamps, durations, custom metadata

 • interpreted according to previous CAPS event

 • convenience functions to map, make writable,
 merge, copy memories

 Ok, but I have to manage a pool of buffers!

 • useful if allocation is expensive or only have a limited
 pool of memory

 • GstBufferPool provides base class with standard functionality

 ◦ fixed/dynamic number of buffers, pre-allocate

 ◦ acquiring buffer can block or fail

 • allocates from a configurable GstAllocator

 What about custom configuration?

 • generic configuration interface

 ◦ allow new allocations

 ◦ min/max num. of buffers, allocation size,
 parameters, GstAllocator

 ◦ extendable by subclass

 • custom features can be queried

 And raw video? It's so complicated!

 • GstVideoBufferPool subclass

 • supports video meta, cares for correct allocation size

 • GstVideoAlign configuration for per-plane padding

 How do I represent additional buffer information?

 • use GstMeta for custom metadata on a GstBuffer

 • examples: face detection information, per-plane strides,
 gamma transfer function, audio downmix matrizes,
 information about compressed video frames, …

 • also used for delayed processing: cropping, subtitles,
 upload to GL textures (dynamic interfaces on buffers!)

 How do I represent additional buffer information? (cont'd)

 • DO NOT USE FOR: memory specific information or a workaround to
 prevent implementation of a new GstMemory/GstAllocator!

 • can be negotiated via query, has generic transform and description API

 But I don't want to define everything myself!

 • many common GstMeta provided by GStreamer libraries

 • GstVideoMeta, GstVideoCropMeta, GstVideoGLTextureUploadMeta,
 GstVideoOverlayMeta, GstVideoRegionOfInterestMeta

 • GstAudioDownmixMeta

 • GstMPegVideoMeta, others for compressed formats

 • to be continued!

 So, how does negotiation of all that work?

 • two step process

 1. caps negotiation: CAPS query and CAPS event

 2. memory negotiation: ALLOCATION query

 • before data flow and after every RECONFIGURE event

 Caps? What's that?!

 • description of a media type with its properties and generic
 functions for merging, intersecting, etc.

 • can be queried on pads to know what is supported

 • i hope everybody knows that by now, but let's talk about
 a new GStreamer 1.2 feature: GstCapsFeatures

 Ok, what are GstCapsFeatures?

 • additional constraints on caps

 ◦ video/x-raw(memory:EGLImage),format=ARGB,
 width=1280,height=720

 ◦ memory type, metas, other constraints

 ◦ caps only compatible if same caps features

 • part of caps, negotiated same way

 The famous ALLOCATION query

 • used for negotiating allocation related information

 ◦ caps for the allocation

 ◦ lists of possible buffer pools, allocators and
 allocation parameters

 ◦ allocation size, min/max number of buffers

 ◦ supported metas

ALLOCATION query and GstAllocator/GstBufferPool
replace gst_pad_alloc_buffer() from 0.10 and are
much more flexible and efficient.

 But my elements need to share some common context!

 • use GstContext and related queries/messages for this

 • examples: VADisplay, OpenGL context, EGLDisplay, HTTP session, …

 • queries for getting local contexts, messages for global contexts

 • bins are caching and propagating contexts based on messages

 • so how does it work in practice?

 Does that mean everything is fixed and great now?

 Open Issues: Reconfiguration

 • problem: memory provider needs to release all
 memory before reconfiguration

 • so far not solved but some ideas, see Bugzilla #707534

 ◦ need to keep track of memory instead of buffers

 ◦ how to integrate that with 3rd party libs like libav?

 ◦ how to make it work reliable?

 Open Issues: Device Probing API

 • problem: "give me all camera devices and their elements"

 • solution existed in 0.10 but was highly suboptimal

 • new solution already in Bugzilla #678402

 ◦ based on new GstPluginFeature subclass

 ◦ planned for 1.4

 And in practice?

 • gst-vaapi works transparently, even in WebKit

 • gst-omx and v4l2 elements have zerocopy support

 • RPi can decode HD video to EGLImages and render
 them in realtime

 • gst-plugins-gl has a solution to all GL related
 threading problems and interoperates with non-GL
 elements

 And in practice? (cont'd)

 let me repeat: completely transparent, elements
 or applications don't have to know

 … and all this without 0.10-style hacks!

 Questions?

 also feel free to talk to me later or write a mail

 sebastian@centricular.com

 summary of this talk will be on my personal blog:
 http://coaxion.net/blog

 Thank You!

 Pictures

 Bulky City by Peter Kemmer, CC BY-SA-NC 2.0
 MOS 6581 sound chip from C64 by Christian Taube, CC BY-SA 2.5
 Arduino FTDI chip by Dusty Dingo, Public Domain
 JTAG board 1 by Andrew Magil, CC BY 2.0
 Silicon City by Tomizak, CC BY-ND 2.0

