
Achieving Pexcellence
Håvard Graff - havard@pexip.com 

mailto:havard@pexip.com


Achieving Pexcellence
Challenges of real time streaming applications



Background

 TANDBERG

 Movi

 CISCO

 Cisco Jabber Video for Telepresence

 Video Conferencing SoftClient

 Think Manageable and Standards-based Skype

 Uses GStreamer

 Several 100K deployments



Problems

 Billions and Billions of Threads (> 1)

 Race conditions 

 Unexpected Behavior

 Deadlocks

 Crashes

 Real-Time (Live) System

 Never reproducible results

 Experienced choppy audio?



Basic Solution

 10 Reproduce or Induce problem with a Test

 20 Fix it

 30 goto 10



Basic Solution

 10 Reproduce or Induce problem with a Test

 20 Fix it

 25 Commit Test and Fix into your CI

 30 goto 10



But how?!?

 Not preaching TDD, but…

 Writing good tests are hard, and where your focus *should* be…

 Too much “brilliant” code has crap tests. (if it’s lucky…)

 All code has bugs.

 But testing will find more of them.

 Show you our approach:

 Not perfect, but we like it (more && more)

 Interesting to hear other approaches as well!



GstCheck

 Framework for Testing

 Easy to:

 Write Tests

 Run Tests (make mytest.check)

 Debug Tests (make mytest.gdb)

 Test Tests (make mytest.forever)

 Valgrind integration (make mytest.valgrind)

 With suppression!

 Beginnings of a framework for testing GstElements



GstHarness

 Based on gst_check_setup_element

 Evolved on a need-to-test basis

 Refactoring++

 Used in (almost) all our GStreamer tests (> 600)

 Goal: To easily write simple tests, testing complex 
scenarios!



GstHarness

srcsinksrc sink

GstElement



GstHarness

srcsinksrc sink

GstElement

gst_harness_push (h, 
buf);

buf = 
gst_harness_try_pull (h);



Test
Does GstIdentity modify buffers?



Test
How about a GstQueue?



GstQueue

srcsinksrc sink

GstQueue

gst_harness_push (h, 
buf);

buf = 
gst_harness_try_pull (h);

!



GAsyncQueue

 Perfect!

 gst_harness_try_pull: g_async_queue_try_pop

 gst_harness_pull: g_async_queue_timeout_pop

 Remember large timeout (we use 60 sec...)

 The test finishes exactly when it should!

 No nasty sleeps

 You can never know how long is long enough...



Determinism

srcsinksrc
sink

GstQueue

gst_harness_push (h, 
buf);

buf = gst_harness_pull 
(h);

GAsyncQue
ue



Test
Lets try a Src



audiotestsrc

src sink

GstAudioTest
Src

buf = gst_harness_pull 
(h);

num_bufs = 
gst_harness_received_buffers (h);

is-live = TRUE



We need…

 A way to control time.



GstTestClock

 A GstClock Implementation

 Control Time

 Control GstClockID waits

 Already in GStreamer 1.0



audiotestsrc

src sink

GstAudioTest
Src

is-live = TRUE

gst_clock_id_wai
t ();

GstTestClock



GstTestClock :: “Crank”

 1. Wait for a given number of waits

 Fail if not equal

 2. Get the lowest time waited for

 3. Advance the clock to that time

 4. Release all waits

 Recently added, used to be racy for >1



audiotestsrc

src sink

GstAudioTest
Src

is-live = TRUE

gst_harness_crank_single_clock_w
ait ();

GstTestClock

gst_clock_id_wait 
();



audiotestsrc

src sink

GstAudioTest
Src

is-live = TRUE

GstTestClock

gst_clock_id_wait 
();

buf = gst_harness_pull 
(h);



Sub-Harnesses

 Testing your element in a bigger context

 Helping keep things deterministically

 src_harness:

 A pipeline to feed input into your element

 Typically a src-element + friends

 sink_harness:

 A pipeline for processing your elements output

 Typically a sink-element + friends



gst_harness_push_from_src (h);

is-live = TRUE

src sink

GstBaseSrc

src sinksrcsink

GstElemen
t

 Crank (src_harness)

 Pull (src_harness)

 Push



Test
H.264 decoder sends Keyunit-Request when there is packetloss



Stress-Testing

 A complete opposite

 Very random

 Can uncover a lot of very rare crashes

 Specially powerful combined with CI

 Some tests fail once every 2 weeks…

 Built in to the Harness



Stressing

srcsinksrc sink

GstElement

Request & Release 
Pad

Request & Release 
Pad

StateChanges NULL <-> 
PLAYING

Push Buffers & 
Events

Push Events & 
Queries

Set / Get Caps



“Multi-Harnessing”

is-live = TRUE

GstEleme
nt

 One harness per 
pad

src sink

src sink src sink



Test
Stressing a Funnel



Further improvements

 Merging into GStreamer

 Porting 0.10->1.0 (done!)

 Remove Pexip-specifics

 Make nicer / More complete

 Start writing / rewriting tests inside GStreamer

 Keep evolving with usecases

 Before X-Mas! (“Ho Ho”, “From all of us” etc.)

 “GStreamer-Element Acceptance Test”

 Do a lot of automatic checking

 Stressing what can be stressed

 Would catch a lot of beginner errors (and a few master ones…)



Thanks!

 Contact:

 havard@pexip.com 

 hgr @ #gstreamer

 Questions?



mailto:havard@pexip.com

