
Achieving Pexcellence
Håvard Graff - havard@pexip.com 

mailto:havard@pexip.com


Achieving Pexcellence
Challenges of real time streaming applications



Background

 TANDBERG

 Movi

 CISCO

 Cisco Jabber Video for Telepresence

 Video Conferencing SoftClient

 Think Manageable and Standards-based Skype

 Uses GStreamer

 Several 100K deployments



Problems

 Billions and Billions of Threads (> 1)

 Race conditions 

 Unexpected Behavior

 Deadlocks

 Crashes

 Real-Time (Live) System

 Never reproducible results

 Experienced choppy audio?



Basic Solution

 10 Reproduce or Induce problem with a Test

 20 Fix it

 30 goto 10



Basic Solution

 10 Reproduce or Induce problem with a Test

 20 Fix it

 25 Commit Test and Fix into your CI

 30 goto 10



But how?!?

 Not preaching TDD, but…

 Writing good tests are hard, and where your focus *should* be…

 Too much “brilliant” code has crap tests. (if it’s lucky…)

 All code has bugs.

 But testing will find more of them.

 Show you our approach:

 Not perfect, but we like it (more && more)

 Interesting to hear other approaches as well!



GstCheck

 Framework for Testing

 Easy to:

 Write Tests

 Run Tests (make mytest.check)

 Debug Tests (make mytest.gdb)

 Test Tests (make mytest.forever)

 Valgrind integration (make mytest.valgrind)

 With suppression!

 Beginnings of a framework for testing GstElements



GstHarness

 Based on gst_check_setup_element

 Evolved on a need-to-test basis

 Refactoring++

 Used in (almost) all our GStreamer tests (> 600)

 Goal: To easily write simple tests, testing complex 
scenarios!



GstHarness

srcsinksrc sink

GstElement



GstHarness

srcsinksrc sink

GstElement

gst_harness_push (h, 
buf);

buf = 
gst_harness_try_pull (h);



Test
Does GstIdentity modify buffers?



Test
How about a GstQueue?



GstQueue

srcsinksrc sink

GstQueue

gst_harness_push (h, 
buf);

buf = 
gst_harness_try_pull (h);

!



GAsyncQueue

 Perfect!

 gst_harness_try_pull: g_async_queue_try_pop

 gst_harness_pull: g_async_queue_timeout_pop

 Remember large timeout (we use 60 sec...)

 The test finishes exactly when it should!

 No nasty sleeps

 You can never know how long is long enough...



Determinism

srcsinksrc
sink

GstQueue

gst_harness_push (h, 
buf);

buf = gst_harness_pull 
(h);

GAsyncQue
ue



Test
Lets try a Src



audiotestsrc

src sink

GstAudioTest
Src

buf = gst_harness_pull 
(h);

num_bufs = 
gst_harness_received_buffers (h);

is-live = TRUE



We need…

 A way to control time.



GstTestClock

 A GstClock Implementation

 Control Time

 Control GstClockID waits

 Already in GStreamer 1.0



audiotestsrc

src sink

GstAudioTest
Src

is-live = TRUE

gst_clock_id_wai
t ();

GstTestClock



GstTestClock :: “Crank”

 1. Wait for a given number of waits

 Fail if not equal

 2. Get the lowest time waited for

 3. Advance the clock to that time

 4. Release all waits

 Recently added, used to be racy for >1



audiotestsrc

src sink

GstAudioTest
Src

is-live = TRUE

gst_harness_crank_single_clock_w
ait ();

GstTestClock

gst_clock_id_wait 
();



audiotestsrc

src sink

GstAudioTest
Src

is-live = TRUE

GstTestClock

gst_clock_id_wait 
();

buf = gst_harness_pull 
(h);



Sub-Harnesses

 Testing your element in a bigger context

 Helping keep things deterministically

 src_harness:

 A pipeline to feed input into your element

 Typically a src-element + friends

 sink_harness:

 A pipeline for processing your elements output

 Typically a sink-element + friends



gst_harness_push_from_src (h);

is-live = TRUE

src sink

GstBaseSrc

src sinksrcsink

GstElemen
t

 Crank (src_harness)

 Pull (src_harness)

 Push



Test
H.264 decoder sends Keyunit-Request when there is packetloss



Stress-Testing

 A complete opposite

 Very random

 Can uncover a lot of very rare crashes

 Specially powerful combined with CI

 Some tests fail once every 2 weeks…

 Built in to the Harness



Stressing

srcsinksrc sink

GstElement

Request & Release 
Pad

Request & Release 
Pad

StateChanges NULL <-> 
PLAYING

Push Buffers & 
Events

Push Events & 
Queries

Set / Get Caps



“Multi-Harnessing”

is-live = TRUE

GstEleme
nt

 One harness per 
pad

src sink

src sink src sink



Test
Stressing a Funnel



Further improvements

 Merging into GStreamer

 Porting 0.10->1.0 (done!)

 Remove Pexip-specifics

 Make nicer / More complete

 Start writing / rewriting tests inside GStreamer

 Keep evolving with usecases

 Before X-Mas! (“Ho Ho”, “From all of us” etc.)

 “GStreamer-Element Acceptance Test”

 Do a lot of automatic checking

 Stressing what can be stressed

 Would catch a lot of beginner errors (and a few master ones…)



Thanks!

 Contact:

 havard@pexip.com 

 hgr @ #gstreamer

 Questions?



mailto:havard@pexip.com

