~gstreamer collabora v

Time and Synchronization for
dummies

Edward Hervey
edward@collabora.com
bilboed@bilboed.com

-’

~gstreamer

mailto:edward@collabora.com
mailto:bilboed@bilboed.com

Goals

Feel comfortable with fiming anad
synchronization in GStreamer

From real-life examples ...
.. To what GSfreamer can do ...
.. and understand why

Time

» Ordering (past, present, future) of
events

e Measure of duration of events and
iNntervals between them

e “a certain number of repetitions of
one or another standard cyclical
event ... constitutes one standard
unit of time such as the second”

Chrono-meter (clocks)

» Sundials, water clocks (clepsydra)

* Hourglass (Magellan) and candles
* Mechanical clock

e Quartz and atomic (caesium)
clocks

Time
 Clocks have different rates and
precision

» Clocks measure the passing of fime
(duration, intervails)

 The absolute tfime is not useful
* Meefing at 23289543/843294 !
e YOU nheed a reference

« 01/10/2013 00:00 UTC is
332895437840000

* Meetfing in 10mins from “now”

-’
N’

— &

GstClock

* APl and base implementation
 Monotonic rate

* et current clock absolute time
« gst_clock_get_time()

» Schedule event for absolute time
« gst_clock_id_wait()/wait_async()

« Works without a pipeline

-’
N’

— &

GstClock

» Different implementations
 Doesn't matter for rest of talk

 Assume it's The monotonic POSIX
clock

Clock
Absolute
Time

-’

~gstreamer

Buffer fimestamps

» videotestsrc | fimeoverlay |
xvimagesink sync=False

* [imestamps on buffers produced
by videotestsrc

» 0, 1/30s, 2/30s, 3/30s,

Buffer fimestamps

* Argh, everything goes too fast |

* Without synchronization, it's like unix
shell piping (+/-)
» Buf the buffers had fimestamips |

» Synchronization, it's useful (c) (tm)

 How are we going fo synchronize
against a clock ?

-’
N’

— &

Running fime

* We want buffers to be
synchronized N seconds after we
start playing

« Moment the pipeline switches to
playing (base fime)

* + N seconds, AKA : Clock running fime

-

0 Running
Time
>
: Clock
oase lime Absolute
e Time

~gstreamer

Segment

 How do we figure out the running
time for buffers ?

 Take the absolute value ? What if the
first buffer PTS is not O ?

« We need a reference (from which
to calculate the running fime of
each buffer)

* Enter GstSegment |

-’
N’

— &

Segment

* Helps define the various fime
relationships in a stream

» start,stop: first and last valid buffer
fimestamp
* For any buffer:

* PTS - Segment.start => buffer running
fime
e (noft final formula)

Segment.start| Buffer.PTS Segment.stop

| " - o

| . . . Buffer

| Timestamps

|

| : : :

| A 4 A 4 A 4 -

0 ! Running
| Time
>
- Clock
Base fime Absolute

i Time

~gstreamer

Base Time

 What if | pause 7

* Running fime is the amount of time
“spent” in PLAYING

* Need to update base_time

* PLAYING=>PAUSED : remember
running_time

e PAUSED=>PLAYING : base time =
current_absolute _time —
running_time.

-’
N’

— &

Segment rate

 What if | play faster/slower 7

* | want buffers to be synchronized
faster/slower

¢ Segment rate property

* running_time gets adjusted

according

Y

* (B.PTS-3S.5

-’
N’

— &

rart) / ABS(S.rate)

! Segment.rate > 1.0
|

Segment.start| Buffer.PTS Segment.stop
i . — >
' ' Buffer
Timestamps

y S >
Running

Time
>

: Clock
Base fime Absolute

e Time
~gstreamer

Segment rate

« What if | play backwards (in
reverse) 7

» Segment.rate < 0.0
« Buffer have decreasing timestamps

* Running time is calculated using
Segment.stop

» (S.stop - B.PIS) / ABS(S.rate)

! Segment.rate < 0.0
|

Segment.start| Buffer.PTS Segment.stop
i — >
Lo Buffer
Timestamps

2 r Y -
Running

Time
>

: Clock
Base fime Absolute

e Time
~gstreamer

Stream time

« “User-facing tfime”
* Position reporting
» Seek values

* Quite confusing since it's quite
often the same as buffer time.

e When isn't it the same ?

e RTP use-cases
 DVB use-cases
e Some formats

-’
N’

— &

Stream Time

* You connect to a live presentation
via RTP which started 30mins before

* RTP timestamps (i.e. Buffer
timestampps) can be anything

e YOU want to be shown how much
IN The presentation you are

e => Stfream Time

* Segment.fime (reference for sfream
time)

-’
N’

— &

|
|
|
Segment.time,
>
: A A A Stream
| Times

! . . .
Segment.start . Buffer.PTS . Segment.stop
]] & >

Buffer
: : : Timestamps
Y Y Y -
Running
Time

] Clock
~ Base lime Absolute

~gstreamer Time

0

>

So farr....

Absolute Clock Time

Running Time

Buffer Time

Stream Time

Need base_fime and segment

Live sources/pipelines

* Time and Clocks are not just used
for synchronizing buffers/events,

* Also used for knowing when an
event happened.

e Live sources (webcam,
microphone, ...)

Live sources/pipelines

e A vlive” eventis an event that
happens now”

 |f you try to capture foo early/late
you Will miss it

 "Now" Is the current running fime of
the clock.

Audio Capture Delay

|
|
' >
|)
|
| Video Capture Delay
' >
|)
|
|
| :
! Y Y

0 : Running g

Time
' >
| Clock
 — Real World Event Absolute

~gstreamer Time

Live sources/pipelines

* The same event captured over
different sources should have the
same fimestamp

* But we have different capture time
(1 audio segment duration vs |
webcam frame durafion)

* SO we just subtract that value from
the current running time 7

-’
N’

— &

Audio Capture Delay

|
|
' >
! :
|
| , Video Capture Delay
' N >-
| R ’
| R
I -
I .. .
3 :
0 ! Buffer
Time
' >
| Clock
o~ Real World Event Absolute

~gstreamer Time

Live sources/pipelines

» Subfracting capture delay from
running-time helps ...

* But would result in all buffers always
arriving late (if you wanted to play
them back in the same pipeline)

* Entfer latency |

-’
N’

— &

Latency

* Ensure buffers/events will be able
to be synchronized downstream
(I.e. Not dropped)

* As quickly as possible

 Not foo early and not too late
(grmbl 1)

 How do we figure that

-’
N’

— &

Latency

e Let every element in tThe pipeline
report what

* IS the minimum latency it is infroducing
(for producing/processing datfa)

* |s the maximum latency it can support
(before dropping/blocking)

* GST_QUERY_LATENCY

» Pipeline emits and distributes ideal
latency

-’
N’

— &

|
| Audio Capture Delay
|_>. (min latency)

P » Audio ringbuffer size
' (max latency)

Video Capture Delay
.~ (min latency)

L . . V412 queue size

I (max Iatency)

M g 0 W gee—

I——> MAX (min latency) : Global Latency
- -
— - \MIN (max latency)
p >
0 unning
-~ Real World Event .
Time

~gstreamer

Latency

* Rendering time becomes;

* Latency + running_fime

|
| Audio Capture Delay
L. (minlatency)

> Video Capture Delay
. (min latency)

I s
8 .
- .
.
L4 .
.
L]
.
.
.
.
1 .

0 Running
" Time

|——> Pipeline Latency
| .
| i
| A >
| Render

Real World Event Time

]

~gstreamer

Latency

« Other elements can infroduce
latency

* Decoders (frame reordering)
 Transformation elements

* Or increase max-latency

¢ Queue |

No more time |

e Different clocks

» Slaving clocks and distributed
synchronization

 Advanced fechniques
e GO see Jan's talk
 You have the basics |

-’
N’

— &

Time for questions ?

e Ortime for lunch ?

—_’

~gstreamer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

