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Goals

Feel comfortable with fiming anad
synchronization in GStreamer

From real-life examples ...
.. To what GSfreamer can do ...
.. and understand why



Time

» Ordering (past, present, future) of
events

e Measure of duration of events and
iNntervals between them

e “a certain number of repetitions of
one or another standard cyclical
event ... constitutes one standard
unit of time such as the second”



Chrono-meter (clocks)

» Sundials, water clocks (clepsydra)

* Hourglass (Magellan) and candles
* Mechanical clock

e Quartz and atomic (caesium)
clocks



Time
 Clocks have different rates and
precision

» Clocks measure the passing of fime
(duration, intervails)

 The absolute tfime is not useful
* Meefing at 23289543/843294 !
e YOU nheed a reference

« 01/10/2013 00:00 UTC is
332895437840000

* Meetfing in 10mins from “now”
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GstClock

* APl and base implementation
 Monotonic rate

* et current clock absolute time
« gst_clock_get_time()

» Schedule event for absolute time
« gst_clock_id_wait()/wait_async()

« Works without a pipeline
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GstClock

» Different implementations
 Doesn't matter for rest of talk

 Assume it's The monotonic POSIX
clock



Clock
Absolute
Time
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Buffer fimestamps

» videotestsrc | fimeoverlay |
xvimagesink sync=False

* [imestamps on buffers produced
by videotestsrc

» 0, 1/30s, 2/30s, 3/30s, ....



Buffer fimestamps

* Argh, everything goes too fast |

* Without synchronization, it's like unix
shell piping (+/-)
» Buf the buffers had fimestamips |

» Synchronization, it's useful (c) (tm)

 How are we going fo synchronize
against a clock ?
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Running fime

* We want buffers to be
synchronized N seconds after we
start playing

« Moment the pipeline switches to
playing (base fime)

* + N seconds, AKA : Clock running fime
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Segment

 How do we figure out the running
time for buffers ?

 Take the absolute value ? What if the
first buffer PTS is not O ?

« We need a reference (from which
to calculate the running fime of
each buffer)

* Enter GstSegment |
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Segment

* Helps define the various fime
relationships in a stream

» start,stop: first and last valid buffer
fimestamp
* For any buffer:

* PTS - Segment.start => buffer running
fime
e (noft final formula)
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Base Time

 What if | pause 7

* Running fime is the amount of time
“spent” in PLAYING

* Need to update base_time

* PLAYING=>PAUSED : remember
running_time

e PAUSED=>PLAYING : base time =
current_absolute _time —
running_time.
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Segment rate

 What if | play faster/slower 7

* | want buffers to be synchronized
faster/slower

¢ Segment rate property

* running_time gets adjusted

according

Y

* (B.PTS-3S.5
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! Segment.rate > 1.0
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Segment rate

« What if | play backwards (in
reverse) 7

» Segment.rate < 0.0
« Buffer have decreasing timestamps

* Running time is calculated using
Segment.stop

» (S.stop - B.PIS) / ABS(S.rate)



! Segment.rate < 0.0
|

Segment.start| Buffer.PTS Segment.stop
i — >
Lo Buffer
Timestamps

2 r Y -
Running

Time
>

: Clock
Base fime Absolute

e Time
~gstreamer



Stream time

« “User-facing tfime”
* Position reporting
» Seek values

* Quite confusing since it's quite
often the same as buffer time.

e When isn't it the same ?

e RTP use-cases
 DVB use-cases
e Some formats
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Stream Time

* You connect to a live presentation
via RTP which started 30mins before

* RTP timestamps (i.e. Buffer
timestampps) can be anything

e YOU want to be shown how much
IN The presentation you are

e => Stfream Time

* Segment.fime (reference for sfream
time)
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So farr....

Absolute Clock Time

Running Time

Buffer Time

Stream Time

Need base_fime and segment



Live sources/pipelines

* Time and Clocks are not just used
for synchronizing buffers/events,

* Also used for knowing when an
event happened.

e Live sources (webcam,
microphone, ...)



Live sources/pipelines

e A vlive” eventis an event that
happens now”

 |f you try to capture foo early/late
you Will miss it

 "Now" Is the current running fime of
the clock.



Audio Capture Delay

|
|
' >
| )
|
| Video Capture Delay
' >
| )
|
|
| :
! Y Y

0 : Running g

Time
' >
| Clock
 — Real World Event Absolute

~gstreamer Time



Live sources/pipelines

* The same event captured over
different sources should have the
same fimestamp

* But we have different capture time
(1 audio segment duration vs |
webcam frame durafion)

* SO we just subtract that value from
the current running time 7
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Audio Capture Delay
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Live sources/pipelines

» Subfracting capture delay from
running-time helps ...

* But would result in all buffers always
arriving late (if you wanted to play
them back in the same pipeline)

* Entfer latency |
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Latency

* Ensure buffers/events will be able
to be synchronized downstream
(I.e. Not dropped)

* As quickly as possible

 Not foo early and not too late
(grmbl 1)

 How do we figure that
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Latency

e Let every element in tThe pipeline
report what

* IS the minimum latency it is infroducing
(for producing/processing datfa)

* |s the maximum latency it can support
(before dropping/blocking)

* GST_QUERY_LATENCY

» Pipeline emits and distributes ideal
latency
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Latency

* Rendering time becomes;

* Latency + running_fime
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Latency

« Other elements can infroduce
latency

* Decoders (frame reordering)
 Transformation elements

* Or increase max-latency

¢ Queue |



No more time |

e Different clocks

» Slaving clocks and distributed
synchronization

 Advanced fechniques
e GO see Jan's talk
 You have the basics |
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Time for questions ?

e Ortime for lunch ?
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