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Lossy Audio Codecs
● Two common types:

– Speech/communication (G.72x, GSM, AMR, Speex)
● Low delay (15-30 ms)
● Low sampling rate (8 kHz to 16 kHz): limited fidelity
● No support for music

– General purpose (MP3, AAC, Vorbis)
● High sampling rates (44.1 kHz or higher)
● "CD-quality" music
● High-delay (> 100 ms)

– We want both: high fidelity with very low delay
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Coding Latency
● Low delay is critical to live interaction

– Prevents collisions during conversation

– Reduce need for echo cancellation
● Good for small, embedded devices without much CPU

– Higher sense of presence

– Allows synchronization for live music
● Need less than 25 ms total delay (Carôt 2006)
● Equivalent to sitting 8 m apart (farther requires a conductor)

● Lower delay in the codec increases range
– 1 ms = 200 km in fiber

High delay
(~250 ms)

Low delay
(~15 ms)
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Opus vs. the Competition: 
Latency
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Opus vs. the Competition: 
Quality
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Opus Features
● Sampling rate: 8...48 kHz (narrowband to fullband)
● Bitrates: 6...510 kbps
● Frame sizes: 2.5...20 ms
● Mono and stereo support
● Speech and music support
● Seamless switching between all of the above
● Combine multiple streams for up to 255 channels
● It just works for everything

Adaptive sweep: 8...64 kbps
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Opus Characteristics
● Standardized by the IETF (RFC 6716)

– First free, state-of-the-art audio codec standardized

● Built out of two separate codecs
– SILK: a linear prediction (speech) codec

● In-development by Skype (now Microsoft) since Jan. 2007

– CELT: an MDCT (music) codec
● In-development by Xiph since November 2007

– Both were modified a lot to form Opus
● Standardization saw contributions from Mozilla, Microsoft 

(Skype), Xiph, Broadcom, Octasic, Google, etc.
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Opus Operating Modes
● SILK-only: Narrowband (NB), Mediumband (MB) or Wideband 

(WB) speech

● Hybrid: Super-wideband (SWB) or Fullband (FB) speech

● CELT-only: NB to FB music
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SILK
● Linear prediction

– Short-term prediction via a linear IIR filter
● 10 or 16 coefficients (for NB or MB / WB respectively)
● Good for speech: filter coefficients directly related to 

cross-sectional area of human vocal tract 

– Long-term prediction via a “pitch” filter
● Good for “periodic” signals from 55.6 Hz to 500 Hz

● Variable bitrate
– Quantization level controls rate indirectly

– Range (arithmetic) coding with fixed probabilities
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Linear Prediction
● IIR filter: 
● Analysis “whitens” a 

signal
● Quantization (lossy 

compression) adds 
noise

● Synthesis “shapes” 
the noise the same 
as the spectrum

y [ i ]= x [i ]+∑
k=0

D−1

a [k ] y [i−k−1]
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Linear Prediction
● SILK: different analysis 

and synthesis filters
● De-emphasizes 

spectral valleys
– Distortion least   

noticible there

– Reduces entropy 
(distance between 
signal and noise floor)

● Uses fewer bits
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LPC Coefficients
● The filter a[k] needs to be quantized and 

transmitted
– Quantizing the filter coefficients directly is bad

● Drastically changes the frequency response of the filter

● Convert to “line spectral frequencies” (LSFs)
– Split filter into two polynomials with roots on the unit 

circle (Itakura 1975)
● Each root represents a frequency (0...π)
● Math at http://en.wikipedia.org/wiki/Line_spectral_pairs

– SILK quantizes LSFs using vector quantization 
(VQ) + scalar quantization

http://en.wikipedia.org/wiki/Line_spectral_pairs
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Vector Quantization
● Approximates a multidimensional distribution 

with a finite number of codewords (vectors)
Scalar Quantization (2 bits/dim) Vector Quantization (2 bits/dim)

RMS error = 0.89 RMS error = 0.71 
(20% better)
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Vector Quantization
● Easily scales to less than 1 bit per dimension 

(Opus uses VQ with up to 176 dims)
Scalar Quantization (0.5 bits/dim) Vector Quantization (0.5 bits/dim)

RMS error = 2.93 RMS error = 1.63 
(44% better)
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Quantizing LSFs: Stage 1
Use a trained, 32-entry VQ codebook
– Just search a big table for the best entry

– 4.27 (NB) to 4.49 (WB) bits on average

● Good quality: less than 1 dB spectral distortion 
(SD)

● We have 10 or 16 LSFs arranged arbitrarily on a 
circle (ignoring order): 32 entries is not enough

1
2π

∫
−π

π

[10 log (S (ω))−10 log ( Ŝ (ω))]
2
d ω



19 The Xiph.Org Foundation & The Mozilla Corporation

Quantizing LSFs: Stage 2
● Scalar quantization of error from stage 1

– Also uses additional first-order prediction of error

● Error in LSFs has a non-uniform effect on SD
– LSFs bunched close together more important

● SILK: Use LSFs from stage 1 to compute 
approximate weights (Laroia 1991)

● Weights determine scalar quantization step size 

w [k ]=
1

c [k ]−c [k−1]
+

1
c [k+1]−c [k ]
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Long-Term Prediction
● LPC residual not really white (still periodic)

Picture blatantly stolen from 
http://health.tau.ac.il/Communication Disorders/noam/noam_audio/adit_kfir/html/lpc3.htm

http://health.tau.ac.il/Communication%20Disorders/noam/noam_audio/adit_kfir/html/lpc3.htm
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Long-Term Prediction
● Use long-term IIR:
● L is the pitch lag 

(period)
● b signaled with 

another trained 
VQ codebook

Picture and sounds blatantly stolen from 
http://health.tau.ac.il/Communication Disorders/noam/noam_audio/adit_kfir/html/lpc3.htm

x [ i ]=e[ i ]+∑
k=0

4

b [k ] x [ i−L−k−1]

Original After LPC After LTP

http://health.tau.ac.il/Communication%20Disorders/noam/noam_audio/adit_kfir/html/lpc3.htm


22 The Xiph.Org Foundation & The Mozilla Corporation

Handling Packet Loss
● LTP uses decoded signal from previous frames 

(up to 18 ms back)
– Packet loss causes mis-prediction in future frames

● SILK: Artificially scale down previous frames
– Uses less prediction (more bits) for the first period

● But only affects the first pitch period

– Amount depends on packet loss: signaled in 
bitstream (1.5 bits on average)
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CELT: "Constrained Energy 
Lapped Transform"

● Transform codec (MDCT, like MP3, Vorbis)
– Short windows → poor frequency resolution

● Explicitly code energy of each band of the signal
– Coarse shape of sound preserved no matter what

● Code remaining details using algebraic VQ
● Useful roughly 40 kbps and above

– Not good for low bitrate speech
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"Lapped Transform"
Time-Frequency Duality

● Any signal can be represented as a weighted 
sum of cosine curves with different frequencies

● The Discrete Cosine Transform (DCT) 
computes the weights for each frequency

220 Hz (A3)

440 Hz (A4)

1245 Hz (D#5)
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"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (harder to compress)
N=48000
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"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (harder to compress)
N=4096 (Maximum Vorbis block size)
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"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (harder to compress)
N=1024 (Typical Opus block size = 960)
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"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (harder to compress)
N=256 (Opus can use 120, 240, 480 960)
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"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (unstable over time)
N=256 (Opus can use 120, 240, 480, 960)

Frame 2...
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"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (unstable over time)
N=256 (Opus can use 120, 240, 480, 960)

Frame 3...



32 The Xiph.Org Foundation & The Mozilla Corporation

"Lapped Transform"
Modified DCT

● The normal DCT causes coding artifacts (sharp 
discontinuities) between blocks, easily audible

● The "Modified" DCT (MDCT) uses a decaying 
window to overlap multiple blocks
– Same transform 

used in MP3, 
Vorbis, AAC, etc.

– But with much 
smaller blocks,
less overlap
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"Constrained Energy"
Critical Bands

● The human ear can hear about 25 distinct 
"critical bands" in the frequency domain
– Psychoacoustic masking within a band is much 

stronger than between bands

Threshold of detection in the 
presence of masker at 1kHz 
with a bandwidth of 1 critical 
band and various levels.

Image blatantly stolen from 
http://www.tonmeister.ca/main/textbook/node331.html

http://www.tonmeister.ca/main/textbook/node331.html
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0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Bark Scale vs. CELT

Frequency (Hz)

"Constrained Energy"
Critical Bands

● Group MDCT coefficients into bands 
approximating the critical bands (Bark scale)
– Band layout the same for all frame sizes

● Need at least 1 coefficient for 120 sample frames
● Corresponds to 8 coefficients for 960 sample frames

– Insufficient frequency resolution for all the bands
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"Constrained Energy"
Coding Band Energy

● Most important psychoacoustic lesson learned 
from Vorbis:

Preserve the energy in each band
● Vorbis does this implicitly with its "floor curve"
● CELT codes the energy explicitly

– Coarse energy (6 dB resolution), predicted from 
previous frame and from previous band

– Fine energy, improves resolution where we have 
available bits, not predicted
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"Constrained Energy"
Coding Band Energy

● CELT (green) vs 
original (red)
– Notice the 

quantization 
between 8.5 kHz 
and 12 kHz

– Speech is 
intelligible using 
coarse energy 
alone (~9 kbps
for 5.3 ms frame 
sizes)
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Coding Band Shape
● After normalizing, each band is represented by 

an N-dimensional unit vector
– Point on an N-dimensional sphere

– Describes "shape" of energy within the band

● CELT uses algebraic vector quantization
– Have lots of codebooks (# dims, bitrates)

– Very large codebooks (exponential in # of dims)
● 50 dims at 0.6 bits/dim is over 1 billion codebook entries

– But we’re coding uniformly distributed unit vectors
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● Use a regularly structured, algebraic codebook: 
Pyramid Vector Quantization (Fischer, 1986)
– We want evenly distributed points on a sphere

● Don't know how to do that for arbitrary dimension

– Use evenly distributed points on a pyramid instead

● For N dimensional vector, allocate K "pulses"
● Codebook: normalized vectors with integer 

coordinates whose magnitudes sum to K

Coding Band Shape
Algebraic Vector Quantization
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Coding Band Shape
N=3 at Various Rates

5.25 bits (K=3) 6.04 bits (K=4) 7.19 bits (K=6) 8.01 bits (K=8)

8.92 bits (K=11) 10.00 bits (K=16) 11.05 bits (K=23) 12.00 bits (K=32)
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Coding Band Shape
Pyramid Vector Quantization

● PVQ codebook has a fast enumeration algorithm
– Converts between vector and integer codebook index

– O(N+K) (lookup table, muls) or simpler O(NK) (adds)

– Latter great for embedded processors, often faster

● Fast codebook search algorithm: O(N·min(N,K))

– Divide by L
1
 norm, round down: at least K-N pulses

– Place remaining pulses (at most N) one at a time

● Codebooks larger than 32 bits
– Split the vector in half and code each half separately 



41 The Xiph.Org Foundation & The Mozilla Corporation

Psychoacoustics
Rate Allocation

● Encoder decides final bitrate early on
– Right after coarse energy and side information

– Can change from packet to packet, to adapt to 
network conditions

● Allocation between bands 
mostly static
– Roughly constant signal-to-

mask ratio
– Two knobs available:

● Boost: Gives more bits to individual bands
● Tilt: shifts bits from LF to HF

Average Allocation @ 64 kbps
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Psychoacoustics
Avoiding Birdie Artifacts

● Small K → sparse spectrum after quantization
– Produces tonal “tweets” in the HF

● CELT: Use pre-rotation and post-rotation to 
spread the spectrum (make it “rougher”)
– Completely automatic (no per-band signaling)
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Psychoacoustics
Transients (pre-echo)

● Quant. error spreads over whole MDCT window
– Can hear noise before an attack: pre-echo

● Split a frame into smaller MDCT windows 
(“short blocks”)
– Interleave results and code as normal

● Still code one energy value per band for all MDCTs

● Simultaneous tones and transients?
– CELT: Use adaptive time-frequency resolution
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Psychoacoustics
Time-Frequency Resolution

Good frequency
resolution

Good time
resolution

F
re

qu
en

cy

Time

F
re

qu
en

cy

Time

Standard Short
Blocks

Per-band TF
Resolution

∆T*∆f ≥ constant

(also known as Heisenberg's
uncertainty principle)
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Psychoacoustics
T-F Resolution Example

Time

F
re

qu
en

cy

=

=

Example
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Psychoacoustics
Pitch Prefilter/Postfilter

● Shapes quant. noise (like SILK’s LPC filter), but 
for harmonic signals (like SILK’s LTP filter)
– Contributed by Broadcom

Prefilter Postfilter



47 The Xiph.Org Foundation & The Mozilla Corporation

Outline
● Introduction
● Opus Design

– SILK

– CELT

● Conclusion



48 The Xiph.Org Foundation & The Mozilla Corporation

Opus Speech Quality
Anssi Rämö, Henri 
Toukomaa, "Voice Quality 
Characterization of IETF 
Opus Codec", Proc. 
Interspeech, 2011.

See IETF proceedings for 
more listening test results:
http://www.ietf.org/proceedings/82/slides/codec-1.pdf

http://www.ietf.org/proceedings/80/slides/codec-5.pdf

http://www.ietf.org/proceedings/82/slides/codec-1.pdf
http://www.ietf.org/proceedings/80/slides/codec-5.pdf
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Opus Music Quality
● 64 kb/s stereo music 

ABC/HR listening 
test by Hydrogen 
Audio

http://people.xiph.org/~greg/opus/ha2011/

http://people.xiph.org/~greg/opus/ha2011/
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Opus in GStreamer
● Current support in gst-plugins-bad

– Contributed by oggkoggk (Vincent Penquerc’h, 
Collabora)

– Backported to 0.10.23
● Some PLC/FEC/header parsing fixes in 0.10.24

– Also available in 0.11.1

● Both Opus in Ogg and RTP supported
– Properly handles multichannel, seeking w/pre-roll, 

pre-skip, sample-accurate cutting, output gain, etc.



51 The Xiph.Org Foundation & The Mozilla Corporation

(Advanced) GStreamer 
Integration Issues

● Sample rate (playback vs. file output)
– Opus files all 48 kHz internally

● No negotation failure for interactive use
● Impact of resampling smaller than that of lossy 

compression

– Should play back directly at this rate if possible (no 
additional resampling)

– But users expect decoding to .wav to have the 
same sample rate as the input they encoded

● Can GStreamer look downstream in the graph to 
distinguish these cases?
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(Advanced) GStreamer 
Integration Issues

● Packet loss concealment / jitter buffer issues
– Variable frame size means you need to decide how 

much concealed audio to generate
● Currently uses last frame size, should use timestamps

– Packet loss rate
● Informs encoder decisions

– Inter/Intra energy coding, built-in FEC,etc.
● Should also use to enable built-in FEC in decoder

– Late packet recovery
● Clone decoder before PLC/FEC decode
● Replay with actual packet once it arrives, so future 

packets decode correctly
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Questions?
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