

Video4Linux: Current Status and
Future Work

Hans Verkuil

Cisco Systems Norway

Typical Consumer Hardware

Tuner
A/D A/V
decoder

PCI/USB
Bridge

(DMA engine)
/dev/video0

Sensor
USB

Bridge
/dev/video0

Shared Buffer Logic

SoC HW: TI OMAP3 ISP

MMU

VPBE Statistics Collection

Previewer Resizer H3A HIST

CCDC (Video Processing Front End)

Interconnect Bus

CSI-1 CSI-2 Parallel

Bridge lane ShifterControl signals

Courtesy of Texas Instruments

 4

TI DM8147: HDVPSS – Broad Market Block Diagram

Scaler
(SC5)

Display Controller

 Compositor

Video
Input
Port 0

Video
Input
Port 1

Noise
Filter

Graphics
Planes

Auxiliary
 Video Path

Primary
Video Path

VPDMA

HD
DACs

SD
DACs

HDMI
Xmt

V
O

U
T

0

V
O

U
T

1

VIP0
Output

VIP1
Output

NF
Rd

NF
Wr

NF
Prev

S
e

c1

G
rp

x2

G
rp

x1

G
rp

x0

Pri
 In

Write
back0

Aux
In

Write
back1

S
ec0

V
B

I S
D

V
B

I H
D

B
y

p
ass1

B
yp

ass0

HDMI DVO2HDCOMP SD

Blend Blend Blend Blend

Scaler (SC1,HQ) Scaler (SC2)Saler
(SC3)

Scaler
(SC4)

W
rite b

ack
2

VIP0 VIP1DVO2DVO1

422I
420T
RGB

422I

42
2I

422
I 422I 422T

420T
4

22
I

4
20

T
422T
420T

422T
420T

RGBR
G

B

R
G

B

R
G

B

420
T

422T
420T

422I
420T

422T
420T

422T

RGBRGB

422I

C
H

R
_U

S

Planned Path

Supported Path

DEIH DEI

C
H

R
_U

S

V
IN

0

V
IN

1

420T

422I

420 Tiled 420 Tiled
8 bit coplanar8 bit coplanar
(to/from IVA)(to/from IVA)

422 Non-Tiled 422 Non-Tiled
 interleaved Storeinterleaved Store
(to/from DSS)(to/from DSS)

RGB RGB GraphicsRGB Graphics
32 bit32 bit
(to/from DDR)(to/from DDR)

422T 422 Tiled 422 Tiled
8 bit coplanar8 bit coplanar
(to/from IVA)(to/from IVA)

L3-2
128-Bit

L3-1
128-Bit

Encoders

420T

Courtesy of Texas Instruments

SoC Video Devices

● Very complex devices.

● Multiple video and graphics streams.

● Flexible video stream routing.

● Applications (gStreamer!) require much more control.

● Digital cameras, mobile phones, media players, TVs,
surveillance applications, video conferencing, in-flight
entertainment, etc., etc.

● Since the V4L2 API did not support these advanced devices,
SoC manufacturers made their own custom drivers.

SoC Support Developments

● Initial talks with Texas Instruments Spring/Summer 2008.

● First RFC July 2008.

● Discussed during the Linux Plumbers Conference in August 2008.

● V4L-DVB mini-summit during the Linux Plumbers Conference in September
2009. Agreed on how to proceed with V4L SoC support.

● Brainstorm meeting in Oslo to discuss memory handling (videobuf) in March
2010.

● Mini-summit in June 2010 in Helsinki.

● Brainstorm meeting in Warsaw in March 2011.

● Meetings with Linaro in May and August 2011 to discuss buffer sharing and
contiguous physical memory allocations.

● A V4L-DVB workshop in October 2011 and a workshop tomorrow.

Core Framework

● Created a struct v4l2_device for basic device-global data.

● Created a struct v4l2_subdev to communicate with (usually i2c)
sub-devices. Register them with v4l2_device. When
v4l2_device is removed, unregister the sub-devices
automatically.

● The 'sub-device' concept is an abstract concept: it does not
care on what (if any) bus the sub-device is located.

● Ensures a unified API towards sub-devices to make it easy to
swap one chip for another.

● Can also be used to expose internals of the video subsystem of
a SoC.

● Created a struct v4l2_fh to keep per-filehandle data. Used to
implement core support for priority and event handling.

Control Framework

● Too much hard work for drivers.

● A lot of code duplication.

● A lot of buggy code.

● Inconsistencies between drivers.

● All controls go through the new framework.

● A driver only needs to supply a s_ctrl function in most cases.

● Future enhancement: expose controls to debugfs.

● Ability to have bridge drivers inherit controls from subdevs.

● Merged in 2.6.36. Added the control event + other
enhancements in 3.1.

HDTV Timings API

● The original API used the 'preset' idea with presets for the
common standards (e.g. 720p30, 1080p60, etc.) allowing you to
get/set/query/enumerate supported presets.

● In addition it was possible to specify exact timings (front &
backporch, sync widths, pixelclock, etc.) with the DV_TIMINGS
API.

● Merged in 2.6.33.

● The preset API turned out to be insufficient and this API is now
marked deprecated. It will be removed in the near future.

● The DV_TIMINGS API was extended to include timings
enumeration and querying (detecting) the current timings.

● This was merged in 3.5.

Events API

● Standard API for V4L2 events.

● Can be used with select() since it arrives as an exception.

● Per-filehandle event queue and event subscription.

● Merged in 2.6.35.

● Improved event handling in 3.1: changes to per-filehandle, per-
event type queues.

● Added an event that is sent whenever a control changes value.
Merged in 3.1.

Media Controller

● Modern v4l drivers often also support framebuffer, alsa, i2c, lirc
and/or dvb devices, hard to keep track of by applications. Need
some central authority to tell apps what is what.

● Many SoCs can reroute the internal videostreams. E.g. capture
from a sensor and do memory-to-memory resizing, or send the
sensor output directly to the resizer.

● Apps writing for SoCs want much more control about the
various components of the device. A way is needed to provide
that control without compromising the normal API which tends
to hide complexity from the user.

Media Controller

● Create a /dev/mediaX device (X >= 0) that can be used to
enumerate the mesh-topology of the device.

● Nodes in the mesh are sub-devices and device nodes. The
general name for a mesh node is entity.

● The mc will also enumerate the possible and current links
between entities.

● The mc allows you to change the links.

● Some sub-devices will have their own device node for
advanced control (/dev/v4l-subdevX).

Media Controller

● For embedded devices the mc controls the internal data flow of
the device.

● For embedded devices the /dev/v4l-subdevX device nodes
allow direct control of the advanced and hardware-specific
features of sub-devices.

● For each particular SoC a userspace library is required to use
the hardware optimally. This allows us to keep the kernel driver
simple. This will be based on libv4l2 and be implemented as
plugins. This is still work in progress.

● Merged in 2.6.39.

TI OMAP3 ISP: Media API

Courtesy of Laurent Pinchart

Shared Buffer Logic

TI OMAP3 ISP: Block Diagram

MMU

VPBE Statistics Collection

Previewer Resizer H3A HIST

CCDC (Video Processing Front End)

Interconnect Bus

CSI-1 CSI-2 Parallel

Bridge lane ShifterControl signals

Courtesy of Texas Instruments

videobuf2

● Existing videobuf framework was very bad code.

● A new videobuf2 framework was created that solves the existing
problems with videobuf2. In particular buffer operations are now
separate from memory operations.

● Merged in 2.6.39.

● The vb2 framework also made multiplanar support and
memory-to-memory devices possible.

Codec & Flash support

● Codec: support for H.264/MPEG4/DIVX/etc. elementary
streams. Merged in 3.1.

● Support for Flash controllers. Merged in 3.1.

● Added support for JPEG compression (replacing the ugly
VIDIOC_JPEGCOMP ioctl). Merged in 3.4.

Selection & Radio support

● Improve crop and compose support through the new selection
API. Merged in 3.2.

● Added support for multiple frequency bands for radio
receivers/transmitters. Merged in 3.6.

● Added libv4l2rds for RDS decoding (including TMC). TMC
decoding still needs some work.

Memory Handling

● Video hardware often requires large amounts of physically
contiguous memory.

● Hard to allocated in the kernel due to memory fragmentation.

● Many vendors made their own incompatible 'solutions', based
on reserving memory at boot and creating an API to allocate
from that pool of memory.

● Disadvantage: vendor-specific solutions, and the memory can't
be used for anything else.

● Solution: Contiguous Memory Allocator from Samsung, merged
in 3.5. Memory can be marked as available for DMA buffers or
movable pages. So pages can be moved elsewhere (or
discarded) when needed for DMA buffers.

In Progress: Buffer Sharing

● A lot of work is being done through Linaro (www.linaro.org) to
improve buffer handling in the kernel. Goal: zero-copy video
pipelines.

● Allow easy transfer of buffers from one video device node to
another, or to gpu textures or framebuffers) through the new
dmabuf API (merged in 3.3). Each buffer will be represented by
a file descriptor.

● Work is in progress to allow V4L2 through the videobuf2
framework to handle such buffers.

● An application that wants to use these buffers will have to
ensure that both sides can understand the format of the buffer.

http://www.linaro.org/

In Progress

● Support for DVI/HDMI/DisplayPort/VGA connectors: odds 'n
ends like EDID handling, hotplug detect, rx sense detection.
Expected to be merged for 3.7.

● CEC (Consumer Electronics Control) support.

● Driver improvements: v4l2-compliance tool.

Questions?

e-mail:

hverkuil@xs4all.nl

linux-media mailinglist:

http://www.linuxtv.org/lists.php

mailto:hverkuil@xs4all.nl

