Improving GStreamer Quality

Jason DeRose
2 7 August 2012

O

NOovacut

~gstreamer

open source

multimedia
has a

guality issue

but it's

not an
engineering
problem

IE'S a
DATA
problem |

multimedia
quality
ebb & flow

1 Fix something for

” one type of file

‘ 2 which inadvertently

' ' ,, breaks another type

3 months pass before
regression is found

proprietary multimedia ’o‘
has the same issue -

‘ but it's a bigger problem
. in open source multimedia

’* ‘ simply because of
- ’ broader format support

consequences of ebb & flow

1 too much time is spent
chasing down regressions,
time better spent solving
hard engineering problems
(or catching up on sleep)

consequences of ebb & flow

code shipped to users has
serious quality issues for
at least some formats, and
quality is inconsistent over
time For any given Format

so how
do we
Fix this?

provide
engineers
the DATA

they need

how to get the DATA:

continuous integration testing
against a rather exhaustive set
of real world Files.

how to get the DATA quickly:
use the cloud!

say you need 1000 hours of compute
1 node For 1000 hours

costs the same as
1000 nodes for 1 hour

[3 J

‘ we need regression feedback
’i in hours rather than months

big picture

1. media database
2. playback scenarios

3. NLE scenarios

. e I _- 8 5 ." = g E. B I , d: 1 L 3 n® - I.' - e ..:' .:_ .i. .._.' ¥l >
= 3 v el BT g AT s
.'i_ " £l : Ovacu ; '1".." -1. 4
, ;s I.. £ -. .. '- 1.-.'-. ¥ . : .' .: - .I.l'._ _J"ih.l -_. . r i : .'r" r-. L : .I .:- .

store media files in Dmedia

why Dmedia?

* we can host files on public cloud,
but easily pass around on HDD also

* Dmedia lets you work locally with an
arbitrary and changing subset of Files

* which is important, because this media
database will get BIG (100s of terabytes)

store metadata in DVCS

" 1d": "SM3GS4DUDVXOEU2DTTTWUSHKNRK777IWNSI5UQ4ZWNQGRXAN",
"bytes": 20202333,

"copyright”: "2012 Jason Gerard DeRose",
"license": "CC-BY-SA 3.0",

"content_type": "video/quicktime",

"width": 1920,

"height": 1080,

"frames": 107,

"framerate": {"num": 30000, "denom": 1001},
"samples": 171371,

"samplerate"”": 48000

"video": [
{
"bytes": 3133440,

"duration": 33366666,

We Wa nt "md5": "291b7b738ad38fae8bdcd5e698417508",
"pts": ©
Lo store)
{
"bytes": 3133440,
d eel:)l "duration”: 33366667,

"md5": "fb795cefb2abba5e51674c42aa64b69f",

per-bUfFer . "pts": 33366666

{

metada ta "bytes": 3133440,

"duration": 33366667,
"md5": "940c6860ffc79697189b24102a0c3e74",

"pts": 66733333

" 1d": "SM3GS4DUDVXOEUZ2DTTTWUSHKNRK777IWNSISUQ4ZWNQGRXAN", SO wWe COou ld
"bytes": 20202333, .
"content_type": "video/quicktime", JU st store

"perfect_timestamps": true, _
"video_bytes": 3133440 per Frame mdS

"video": [
these Came.ras DFOdUCE "eec99ef4fe950037dd5c0d905e61a6d6",
"perFECt" tlmestamps "06bd7617a881fecad®d6b4337988602a2",

"eaa9672ce36e173355e32812a9288339",
"c766d6be8cd6e37e8c8f8eb07f3708ef",
"7da8ff75b60ea3f194166b3917de3182",
"16024c7000abb6be6b22efdc0c92delb”,
"49bb77d81394787e4704b75c312b0a7c",
"90f8267d712bfe8d26746fc3de651dal”,
"92bbe39ed01188dcdb7aa3c105d4aad5”,
"7be7832dbOb6bad863fd5aef533d66c9",
"Ofd5acece269f6971e91cf8c821aef6bc”,
"adcffffca706e25630d64508bas5fc39",
"ba7ee74c79f7410887clafefa92785b5"

think of the test scripts as compression functions.
they don't produce pass/fail, they produce DATA.

as we develop deep understanding
of what the correct behavior is

For specific media files, we want

to store metadata rich enough to
automatically verify correctness,
release after release.

(V)
1)
(V)
Y
o wn
1J —
0 o O
O o D
v >.E
hbmJ
1)

._Lwe
C

acp
Ul
wd.nm
EO
- O
WD.._L

spot failure patterns

t expected data

diff result data
agains

insights Ffrom Failure patterns over time

* help identify failure hot-spots (areas that need more
unit tests, re-achitecting, etc)

* shows which subset of files would give a high probability
of detecting regressions (aka, how cheap can we go, how
little compute can we get away with)

* we're looking for more than pass/fail; we're looking fFor
patterns, opportunities for machine learning

types of playback tests

* extraction
* play-through
* seeking

* demux-through?

extraction test

filesrc ! decodebin ! fakesink(s)

State.PAUSED

* everything we can get from caps (width, framerate, etc)
* duration in frames, samples, and nanoseconds

* content_type, etc

play-through test

filesrc ! decodebin ! fakesink(s)

State.PLAYING

* detailed per-buffer info from "handoff" callback(s)
* buffer pts, dts, duration

* buffer data md5, bytes

seek test

filesrc ! decodebin ! fakesink(s)

State.PAUSED/State.PLAYING

* random seeking, random segments
* random state change between PLAYING/PAUSED

* per-buffer results from "handoff" callback(s)

demux-through test

filesrc ! gtdemux ! fakesink(s)

State.PLAYING

* again, detailed per-buffer info from "handoff" callback(s)
* buffer pts, dts, duration

* buffer data md5, bytes

scripts are simple, provide "what is" data

extract FILE.MOV > DATA.JSON
play-through FILE.MOV > DATA.JSON

seek FILE.MOV SEEKS.JSON > DATA.JSON

data analyzed to determine pass/fail,
and to answer the "why"

if you can't deliver perfect
frame accuracy, you can't
do pro editing

types of NLE tests

* quick-test that checks
buffers at a fakesink

* full render to file, then
do per-frame SSIM test

quick test

gnlcomposition ! fakesink

* do a play-through of all source videos to get md5 for each frame
* play-through composition, md5 each bufferin "handoff" callback
* this test is fast and brutally accurate

* and For HDSLR footage we've tested with...

gnonlin delivers perfect frame accuracy!

-,

= a570d49577defe3b5f9d8ee7d5c3a55d
= Pacc421a1258724ce7d3a639849ch2d1
= de@b9c7dee3895e05f952494acae2c4f
= 674b9f5cd9ef15eabc5f847138765857
= dfe490fc3167168602f9dd8das53b536¢
= 7759d4e2a3a151111d504f39ed213977c¢
= 7093b172a43a7078df35ef2248fd1562
= a48c8ff52b536ddc9bbdc58d48a5cchg
= 5e9b808AcB20c5013bc87f3ab77afB4a
= P62f17eB8ddbeB86f42897cab9eb4aeB63
= d58d6ff470a6752fae@77¢c57c105b89%a
= Ob5a94a47b2f7dad80142971175a7818
= B8d7al164a3c3a6d4c280ddb3d20c4c4af3
= 25d90cbebb95b85ca54c161b8159e937
= B8479b290Aef5310b24a2f36a1af93f73
= edcae368c85207440daefbof8992f83a
= Peb328b9f297d18afeb665Ff6ad4ab6f60
= 4f7b82dfPal1626a8a1761e94b86a9d51
= B7e9cee18d92e01643f4b452249d1fca

22cd318006Fa76a9b64308d1a3663d40

on_eos()
match: True

50 slices,

1339 frames

jderose@jgd-ws:~/bzr/gst-examples$

bzr checkout 1p:~jderose/+junk/gst-examples

jderose@jgd-ws: ~/bzr/gst-examples

a570d49577dafe3bsfodB8ee7d5c3a55d
Maccd421a1258724ce7d3a639849ch2d1
de@b9c7dee3895e05f952494acae2c4af
674b9f5cd9ef15eabc5f847138765857
dfe490fc3167168602Ff9dd8dA53b536¢
7759d4e2aa151111d504139ed213977c¢
7093b172a43a7078df35ef2248fd1562
a48c8ff52b536ddc9bbdc58d48a5cchg
5e9b808Ac820c5013bcB87f3ab77af84a
062f17e8ddbe86Tf42897cab9ebd4ae863
d58d6ff470a6752faed77c57c105b89a
Ob5a94a47b2f7dad8m142971175a7818
8d7a164a3c3a6d4c280ddb3d20c4caf3
25d90cbebb95b85cas54c161b8159e937
8479b290Pef5310b24a2f36a1af93f73
edcae368c85207440daefbof8992f83a
Aeb328b9f297d18afeb665f6adab6fe60o
4f7bB82dfPal1626a8a1761e94b86a9d51
B7e9cee18d92e01643f4b452249d1fca
22cd318006fa76a9b64308d1a3663d40

full render + SSIM test

gnlcomposition ! <encoder> ! filesink

* the quick test tells us a lot, but we need to verify renders
* First step is to count frames, check timestamps
* but to be certain, we need per frame SSIM compare

* we're not doing this yet... fingers crossed ©

a note about nanoseconds and frames

def frame_to_nanosecond(frame, framerate):
return frame * SECOND * framerate.denominator // framerate.numerator

def video pts_and duration(start, stop, framerate):
pts = frame_to _nanosecond(start, framerate)
duration = frame_to _nanosecond(stop, framerate) - pts
return (pts, duration)

def video _slice to gnl(offset, start, stop, framerate):
(ptsl, durl) = video pts _and duration(start, stop, framerate)
frames = stop - start
(pts2, dur2) = video pts _and duration(offset, offset + frames, framerate)
return {
'media-start': ptsl,
'media-duration’': durl,
'start': pts2,
"duration': dur2,

modeling user intent

* frames and samples are a better way to model user intent
(easier for Ul designers, keeps us honest)

* easy to convert from frames/samples to nanoseconds when
needed (convert as late as possible to avoid accumulating
rounding error)

* there are some engineering problems using nanoseconds
as the API for video editing (can't produce perfect outgoing
timestamps without being frame and sample aware)

questions?

thank you!

O

NOovacut

