
GStreamer as multimedia framework in
Android: a new alternative.

CELF Embedded Linux Conference Europe
2010

Benjamin Gaignard

October 27, 2010

October 27, 2010
2

Context

∙ ST-Ericsson U671X Android platform on ARM9 @ 416 MHz with
video, audio and graphics dedicated hardware accelerators.

∙ Multimedia hardware capabilities:

∙ Video encode and decode

∙ Audio encode and decode

∙ Graphics

∙ Imaging

∙ Camera

∙ Linux kernel 2.6.29

∙ GStreamer 0.10.26

October 27, 20103

GStreamer in Android: why ?

∙ GStreamer is a mature multimedia framework.

∙ GStreamer is a flexible framework.

∙ GStreamer is supported by an active community.

∙ ST-Ericsson U671X platform was developed and matured since
years using GStreamer as multimedia framework with success.

∙ GStreamer is required by most of Linux framework: MEEGO,
Ubuntu

∙ GStreamer graph based approach is naturally fitting U671X
hardware split (1 GStreamer element for 1 HW block)

October 27, 20104

GStreamer to handle what ?

∙ Multimedia playback: audio/video streams from local storage,
streaming or progressive download.

∙ Multimedia recording: Camera application, Sound Recorder.

∙ Metadata retrieving: audio/video tags, bitrates, codec information,
thumbnails generation.

∙ Constraints:

∙ Do not touch to Android java APIs

∙ Follow Android versions (cupcake, donut, éclair …)

∙ Respect internal Android APIs

October 27, 20105

GStreamer replace OpenCore

Android applications
(Gallery, Sound Recorder,

Camera, etc...)

Android framework

Android multimedia java class
(MediaPlayer, MediaScanner, MetadataRetriever,

MediaRecoder)

Android multimedia C++ framework
(MediaPlayer, MediaScanner, MetadataRetriever,

MediaRecoder)

OpenCore framework
(OpenMax components)

Java

JNI

C++

C

October 27, 20106

GStreamer replace OpenCore

Android applications
(Gallery, Sound Recorder,

Camera, etc...)

Android framework

Android multimedia java class
(MediaPlayer, MediaScanner, MetadataRetriever,

MediaRecoder)

Android multimedia C++ framework
(MediaPlayer, MediaScanner, MetadataRetriever,

MediaRecoder)
+ trivial modifications

Gstreamer framework
(Gstreamer plugins + hardware dedicated plugins)

Java

JNI

C++

C

October 27, 20107

Porting GStreamer on Android, what are the
difficulties ?

∙ Android isn’t built from classical Linux way (no pkg-config, no
configure, no makefile…) it is required to adapt GStreamer build
process to Android one.

∙ Glib isn’t provided natively by Android, need to add it.

∙ All of this have required to rewrite +70 Android makefiles (.mk)

∙ … but it was also an opportunity to carefully select the embedded
elements to optimize GStreamer memory foot print and speed.

∙ Today U671X android platform embeds 273 elements split in 39
GStreamer plugins.

∙ Only use dynamic libraries to not break GStreamer (LGPL) and
Android (Apache) licenses terms.

October 27, 20108

 MediaPlayer services

∙ Playbin2 is used to handle playback, streaming and progressive
download services

∙ Playbin2 has been customized to reduce memory consumption,
with Collabora Multimedia partnership.

∙ Use 2 dedicated sinks for audio and video rendering:

∙ Audio sink requesting adaptation in Android AudioTrack class.

∙ Make match GStreamer states (PAUSED, PLAYING …) and events
(EOS, SEEK, ASYNC-DONE) to Android MediaPlayer expected states
and messages.

∙ All the complexity to handle local playback, streaming or
progressive download is hidden by playbin2.

October 27, 20109

MediaRecorder services

∙ Use dedicated GStreamer pipeline with hardware accelerated
plugins.

∙ Only a limited number of codec supported in Android:

∙ Video: MPEG4, H263, H264

∙ Audio: AMR NB, AMR WB, AAC-LC

∙ Only one muxer required to handle all recording formats: gppmux

∙ v4l2src isn’t use as video source: Android Camera class provide
the video frames.

October 27, 201010

MetadataRetriever services

∙ Thumbnail generation for video files uses hardware accelerator for
video decoding and color space conversion (YUV2RGB).

∙ Android metadata tags are mapped to GStreamer tags to extract:
codec, bit rate, album art, ...

∙ Remove OpenCore implementation from Android MediaScanner
class => everything is done by GStreamer.

∙ Use a simpler graph than playbin2 for better performance and
without cpu/mem heavy cost.

uridecodebin uri=%s ! icbtransform ! appsink caps="video/x-raw-
rgb,bpp=16”

∙ Only video is decoded (not audio) for thumbnail generation.

October 27, 201011

uridecobin optimizations

∙ For thumbnails generation we don’t need to decode audio stream,
we use uridecodebin’s “autoplug-continue” callback to limit graph
building.

October 27, 201012

uridecobin optimizations (2)

∙ For metadata retrieving use the same technique but don’t graph
video too.

∙ It saves time at graph building, reduce memory usage, don’t use
any hardware resource.

How to cope with Android licensing

∙ Android is under APACHE license.

∙ GStreamer is under LGPL v2.1 license.

∙ The wrapper between Android multimedia library and GStreamer
is under ST-Ericsson copyright and is dedicated to U671X
hardware platform.

∙ GStreamer libraries are dynamically linked in Android framework.

∙ Add NOTICE files in GStreamer to match with Android build
process.

October 27, 201013

Improvements done in GStreamer
with Collabora Multimedia support

∙ avidemux and qtdemux parsing speed up and memory
consumption reduction.

∙ Add “push mode” to avidemux, qtdemux and flvdemux.

∙ New RTSP buffering mode to handle data burst on mobile
networks.

∙ queue2 ring buffer mode improvement.

∙ QoS message to detect framedrop.

∙ All those improvements (+ trivial bugs correction) have being
released under LGPLv2.0 and are now available on GStreamer
main stream.

October 27, 201014

Enter date here15

U671X-based phones in mass production

ACER betouch E120ACER betouch E110 ACER betouch E130

HTC
Tianyi

Conclusion

∙ With minimum effort, GStreamer brings to Android:

∙ A full open source multimedia framework.

∙ Maturity.

∙ Additional codecs (VC1, DIVX…) and demuxers (AVI, FLV…)

∙ Community support and reactivity.

∙ Performance.

∙ Evolution (future codec, new streaming protocols, Video Telephony).

October 27, 201016

Questions and Answers

THANK YOU

