GSt r eaner Plugin Writer' s Guide

Richard John Boulton
Erik Walthinsen

GSt reamer Plugin Writer's Guide
by Richard John Boulton and Erik Walthinsen

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,
v1.0 or later (the latest version is presently available at http:/ /www.opencontent.org/openpub/"
(http:/ /www.opencontent.org/openpub/))

Table of Contents

L INtrOAUCHON. ettt sss s ssaas st s s e nes 7
1. D0 T Care? ..ottt s 7

2. Preliminary readingccoocuieciiiiiicecce e e 9

IL. Basic concepts “ teebtsesaeee et sR et e e e bR bR e R e R e R e R b e s 11
B PIUGINS vttt et s 11

4. BIEIMENES ...ttt et e e e 13

5. BUSFETS o e et e 15

6. SCheAUIING ...ttt 17

7. Chain vs Loop Elements............ccooiiiiiiiiniiiicsec e 19

8. Typing and Propertiescccceeeiii ittt 21

9. MEtadata ..o e e e e 23

II1. Building our first plugin.....ecceece s 25
10. Constructing the boilerplate............ccooiiieiiiiciiiiecee e, 25
Doing it the hard way with GstObject..........cooorriieee, 25

Doing it the easy way with FilterFactoryccccoeovninnciiiiniciiciiiinns 25

11. An identity fIlter ...c.cc.oeiiiiii e, 27
Building an object with pads ... 27

Attaching funCIONScieuiiiiiecee e 27

The chain fUNCHONc.coie oo 27

12. The plugin_init fUNCHON.......co.occeremiierieee e s 29
Registering the tyPes........ccoc i e 29
Registering the filter ..., 29

Having multiple filters in a single pIUgin.......cccocoeetrveeeicrinceereieceeen, 29

IV. Building a simple test applicationeeeeeeeireercenccicencneccneen s 31
13. INitHaliZAtioNcueviiiiiiccc 31

14. Instantiating the pIUINScccoiiiiiii e 33

15. Connecting the pluUgIns ..o 35

16. Running the pipelinec.coooieieieiiiiiiiiicc e, 37

V. Loop-based EIEMENtSccceeveeerinininennieciniseneinesstsnsscsesssassssssssestsasssssssssssssssessaens 39
17. How scheduling WOIKS ...t s 39

18. How a 100pfunc WOrKS ...ttt 41

19. Adding a second OULPUL..........cccuiuimiiiiiecceeice e s 43

20. Modifying the test appliCationcccoueieieiniviineieineieeceee e, 45

VI. Types and Properties ereseeesesaesre et ssassaea s s s R e sR e SR s R st SRR AR R S RO RSB S0 s 47
21. Building a simple format for teSting........c.ceccrvreeveeneriirercrceieriereee e, 47

22. A simple MIME tyPe.....cocciiiiriiiiietcietcttcet et 49

23. TYPE PrOPEItIES ...t 51

24. Typefind functions and autoplugging.......cccccovveereiirereicreieriere e, 53

VIL Buffers and Metadata.......neieeseieiceeeinnsesnnsisssssisissssssssssssssessssssesens 55
VIIIL Sources and SINKSccuiieeeeveinieseennesiiisnsissssissnssssssisssssssssssssssssssesssssessaens 55
IX. State managementcoviniiinninniinnnn s 55
X. ChecKList cuueininerennninisenenisiisismssiisisnsssnisnssssesssssssssisssssssssiisisssssisisssssssssissssssssssssssssssssss 55

Chapter 1. Do | care?

This guide explains how to write new modules for GStreamer. It is relevant to:

» Anyone who wants to add support for new input and output devices, often
called sources and sinks. For example, adding the ability to write to a new video
output system could be done by writing an appropriate sink plugin.

» Anyone who wants to add support for new ways of processing data in
GStreamer, often called filters. For example, a new data format converter could be
created.

» Anyone who wants to extend GStreamer in any way: you need to have an
understanding of how the plugin system works before you can understand the
constraints it places on the rest of the code. And you might be surprised at how
much can be done with plugins.

This guide is not relevant to you if you only want to use the existing functionality of
GStreamer, or use an application which uses GStreamer. You lot can go away. Shoo...
(You might find the GStreamer Application Development Manual helpful though.)

Chapter 1. Do I care?

Chapter 2. Preliminar y reading

The reader should be familiar with the basic workings of GSt r eaner . For a gentle
introduction to GStreamer, you may wish to read the GStreamer Application
Development Manual. Since GSt r eaner adheres to the GTK+ programming model,
the reader is also assumed to understand the basics of GTK+.

Chapter 2. Preliminary reading

10

Chapter 3. Plugins

Extensions to GStreamer can be made using a plugin mechanism. This is used
extensively in GStreamer even if only the standard package is being used: a few
very basic functions reside in the core library, and all others are in a standard set of
plugins.

Plugins are only loaded when needed: a plugin registry is used to store the details of
the plugins so that it is not neccessary to load all plugins to determine which are
needed. This registry needs to be updated when a new plugin is added to the
system: see the gstreamer-register utility and the documentation in the GStreamer
Application Development Manual for more details.

User extensions to GStreamer can be installed in the main plugin directory, and will
immediately be available for use in applications. gstreamer-register should be run to
update the repository: but the system will work correctly even if it hasn’t been - it
will just load the correct plugin faster.

User specific plugin directories and registries will be available in future versions of
GStreamer.

11

Chapter 3. Plugins

12

Chapter 4. Elements

Elements are at the core of GStreamer. Without elements, GStreamer is just a bunch
of pipe fittings with nothing to connect. A large number of elements (filters, sources
and sinks) ship with GStreamer, but extra elements can also be written.

An element may be constructed in several different ways, but all must conform to
the same basic rules. A simple filter may be built with the FilterFactory, where the
only code that need be written is the actual filter code. A more complex filter, or a
source or sink, will need to be written out fully for complete access to the features
and performance possible with GStreamer.

The implementation of a new element will be contained in a plugin: a single plugin
may contain the implementation of several elements, or just a single one.

13

Chapter 4. Elements

14

Chapter 5. Buffers

15

Chapter 5. Buffers

16

Chapter 6. Scheduling

17

Chapter 6. Scheduling

18

Chapter 7. Chain vs Loop Elements

19

Chapter 7. Chain vs Loop Elements

20

Chapter 8. Typing and Properties

21

Chapter 8. Typing and Properties

22

Chapter 9. Metadata

23

Chapter 9. Metadata

24

Chapter 10. Constructing the boilerplate

The first thing to do when making a new element is to specify some basic details
about it: what its name is, who wrote it, what version number it is, etc. We also need
to define an object to represent the element and to store the data the element needs. I
shall refer to these details collectively as the boilerplate.

Doing it the hard way with GstObject

The standard way of defining the boilerplate is simply to write some code, and fill in
some structures. The easiest way to do this is to copy an example and modify
according to your needs.

First we will examine the code you would be likely to place in a header file
(although since the interface to the code is entirely defined by the pluging system,
and doesn’t depend on reading a header file, this is not crucial.) The code here can
be found in exanpl es/ pl ugi ns/ exanpl e. h

/* Definition of structure storing data for this elenent. */
typedef struct _GstExanpl e Gst Exanpl e;
struct _GstExanple {

Gst El enent el enent ;

Gst Pad *si nkpad, *sr cpad;

gint8 active;

H

/* Standard definition defining a class for this elenent. */
typedef struct _GstExanpl eCl ass Gst Exanpl ed ass;
struct _Gst Exanpl ed ass {

Gst El enent O ass parent _cl ass;

h

/* Standard nmacros for defining types for this element. */
#defi ne GST_TYPE_EXAMPLE \

(gst _exanpl e_get _type())
#defi ne GST_EXAMPLE(obj) \

(GTK_CHECK_CAST((obj), GST_TYPE_EXAMPLE, Gst Exanpl €))
#defi ne GST_EXAMPLE_CLASS(kl ass) \

(GTK_CHECK_CLASS_CAST((kl ass), GST_TYPE_EXAMPLE, Gst Exanpl e))
#define GST_IS EXAMPLE(obj) \

(GTK_CHECK_TYPE((obj), GST_TYPE_EXAMPLE))
#define GST_| S EXAMPLE_CLASS(obj) \

(GTK_CHECK_CLASS_TYPE((k! ass), GST_TYPE_EXANMPLE))

/* Standard function returning type information. */
& kType gst_exanpl e_get _type(void);

Doing it the easy way with FilterF actory

A plan for the future is to create a FilterFactory, to make the process of making a
new filter a simple process of specifying a few details, and writing a small amount
of code to perform the actual data processing.

25

Chapter 10. Constructing the boilerplate

26

Unfortunately, this hasn’t yet been implemented. It is also likely that when it is, it
will not be possible to cover all the possibilities available by writing the boilerplate
yourself, so some plugins will always need to be manually registered.

As a rough outline of what is planned: the FilterFactory will take a list of appropriate
function pointers, and data structures to define a filter. With a reasonable measure of
preprocessor magic, the plugin writer will then simply need to provide definitions
of the functions and data structures desired, and a name for the filter, and then call a
macro from within plugin_init() which will register the new filter. All the fluff that
goes into the definition of a filter will thus be hidden from view.

Ideally, we will come up with a way for various FilterFactory-provided functions to
be overridden, to the point where you can construct almost the most complex stuff
with it, it just saves typing.

Of course, the filter factory can be used to create sources and sinks too: simply create
a filter with only source or sink pads.

You may be thinking that this should really be called an ElementFactory. Well, we
agree, but there is already something else justifiably ealled an ElementFactory (this
is the thing which actually makes instances of elements). There is also already
something called a PluginFactory. We just have too many factories and not enough
words. And since this isn’t yet written, it doesn’t get priority for claiming a name.

Chapter 11. An identity filter

Building an object with pads
Attac hing functions

The chain function

27

Chapter 11. An identity filter

28

Chapter 12. The plugin_init function

Registering the types
Registering the filter

Having multiple filter s in a single plugin

29

Chapter 12. The plugin_init function

30

Chapter 13. Initialization

31

Chapter 13. Initialization

32

Chapter 14. Instantiating the plugins

(NOTE: we really should have a debugging Sink)

33

Chapter 14. Instantiating the plugins

34

Chapter 15. Connecting the plugins

35

Chapter 15. Connecting the plugins

36

Chapter 16. Running the pipeline

37

Chapter 16. Running the pipeline

38

Chapter 17. How scheduling works

aka pushing and pulling

39

Chapter 17. How scheduling works

40

Chapter 18. How a loopfunc works

aka pulling and pushing

41

Chapter 18. How a loopfunc works

42

Chapter 19. Adding a second output

Identity is now a tee

43

Chapter 19. Adding a second output

44

Chapter 20. Modifying the test application

45

Chapter 20. Modifying the test application

46

Chapter 21. Building a simple format for
testing

47

Chapter 21. Building a simple format for testing

48

Chapter 22. A simple MIME type

49

Chapter 22. A simple MIME type

50

Chapter 23. Type properties

51

Chapter 23. Type properties

52

Chapter 24. Typefind functions and
autoplug ging

53

Chapter 24. Typefind functions and autoplugging

54

Anatomy of a Buffer Refcounts and mutability Metadata How Properties work efficiently
Metadata mutability (FIXME: this is an unsolved problem) Writing a source Pull vs loop based
Region pulling (NOTE: somewhere explain how filters use this) Writing a sink Gee, that was
easy What are states? Mangaging filter state Things to check when writing a filter Things to
check when writing a source or sink

