
Centricular

“decodebin3”
Modern playback use-cases

GStreamer Conference 2015, Dublin
October 8th 2015

Edward Hervey a.k.a bilboed

edward@centricular.com

mailto:edward@centricular.com


Centricular

●Playback ?
●Current implementation

●Pitfalls and limitations
●Some solution (no spoilers)



Centricular

What is playback ?

As a user
I want to play/pause/seek a media

Switch streams if available
….

i.e. the gst-player API
(go see slomo's talk just after)



Centricular

Playback in GStreamer

● playbin (convenience pipeline)

– uridecodebin 
● decodebin

– playsink
– And some non-reusable code



Centricular

decodebin
● Goal : “Take this input stream, figure out what elements are 

needed to decode it”
● Actually decodebin2 (2006, 0.10)
● Recursively figure out elements needed
● Support for hardware outputs (assisted auto-plugging)
● Stream switching without data loss
● “chained” files (ex: ogg)



Centricular

decodebin2

DecodeGroup

Demuxer

Mu
lti
Q

Parser VDec

Parser ADec1

Parser ADec2

typefind



Centricular

Decodebin2: Stream Switching

We might switch streams later on …

We don't want the other stream to be drained completely

Else we will have a gap when switching

multiqueue throttles unlinked streams

But … we're decoding everything :(

Useless CPU/MEM/IO usage



Centricular

Decodebin2: Chained File Support
● i.e. dealing with streaming formats (topology can change at any 

point in time)
● … but only with OGG in mind
● … and brings a bag of issues



Centricular

Decodebin2: Demuxer expectations

● To switch
– Emit 'no-more-pads'

– Add new pads

– Send EOS on old pads

– Remove old pads

● Decodebin2 will create a new DecodeGroup
– Blocks new DecodeGroup

– Waits until old DecodeGroup is drained (EOS reaching the end of that group)

– Switches DecodeGroup over (ghostpads point to new group)



Centricular

decodebin2

Demuxer

Mu
lti
Q

Parser VDec

Parser ADec1

Parser ADec2

typefind

DecodeGroup

Mu
lti
Q

Parser VDec

Parser ADec1

Parser ADec2



Centricular

Chain pitfalls
● New “pending” DecodeGroup

– Increased memory usage (multiqueue)

– Increased CPU usage (duplicated elements)

● Input and output of decodebin is no longer fully linked
– Ex : seek event ending nowhere :(

● Want to just add/remove a stream ?
– Still need to re-create a new bag of source pads

– Breaks playback (switch video decoder in GOP)

– Note: wasn't possible in 0.10 due to SEGMENT limitations



Centricular

Decodebin2 : more issues :(
● Calculating Guessing the ideal multiqueue size

– Not too much (keep memory usage down)

– But enough to cope with interleave
● Distance in time between co-located buffers

● Hard to do because we're not dealing with timed input in 
multiqueue
– Parsers (i.e. guaranteeing timed/chunked data) is after multiqueue



Centricular

uridecodebin
● Gets the proper source element to use for the URI
● If needed, add buffering/queueing (network streams)

– Ideally this is where “network” buffering/queuing should happen

– Not always the case (adaptive demuxers in decodebin)

● Plug result into decodebin
– … or more than one decodebin (ex: RTSP)



Centricular

PlayBin
● Uses uridecodebin

– Output of uridecodebin to inputselector(s) (to switch streams)

– Into playsink

● Allows stream listing/selection
● Extra-uri (for subtitle in separate URI)

– Creates a new parallel uridecodebin

● Gapless support (about-to-finish / next-uri)
– Prerolls another uridecodebin and switches



Centricular

Pitfalls of Stream Selection
● Not a generic API

– Need to duplicate that code/logic in your custom pipeline

● Expects all streams to switch from to be decoded (and switch 
happens in inputselector)

● How do we list streams ?
– Entirely based on source pads from uridecodebin

– What if there are no pads ? (ex: Alternate HLS/DASH)



Centricular

A solution to all these issues ?
● A generic API for listing streams...

– Not tied to pads, Elements can list “hidden” streams

● … and to select streams :
– Elements need to know what downstream wants

– No longer relying on GST_FLOW_NOT_LINKED

● Reduce CPU, Memory and I/O usage to the minimum needed
● And let's use 1.0 improvements

– Segment base (adding streams at any time)

– Better/Saner renegotiation/reconfiguration



Centricular

Generic Stream API 
● Listing Streams

– Could just use stream-id … but not that useful for user

– Also need type of stream, caps, tags, …

● We first need a more convenient way of dealing with “streams”
– New GstStream high-level object



Centricular

GstStream object
● GstObject subclass (refcounted)

– Id (same as STREAM_START stream-id)

– GstStreamType
● GST_STREAM_TYPE_{AUDIO, VIDEO, TEXT, …}

– GstCaps

– GstTagList

● It is just collecting information stored in various places
● In GST_EVENT_STREAM_START

– Get all the information from one place



Centricular

GstStream *gst_stream_new            (const gchar *stream_id,
      GstCaps *caps,
      GstStreamType type,
      GstStreamFlags flags);

const gchar *gst_stream_get_stream_id (GstStream *stream);

void           gst_stream_set_stream_flags (GstStream *stream, GstStreamFlags flags);
GstStreamFlags gst_stream_get_stream_flags (GstStream *stream);

void          gst_stream_set_stream_type (GstStream *stream, GstStreamType 
stream_type);
GstStreamType gst_stream_get_stream_type (GstStream *stream);

void        gst_stream_set_tags (GstStream *stream, GstTagList *tags);
GstTagList *gst_stream_get_tags (GstStream *stream);

void     gst_stream_set_caps (GstStream *stream, GstCaps *caps);
GstCaps *gst_stream_get_caps (GstStream *stream);



Centricular

GstStreamCollection
● A immutable collection of GstStream

– Usually posted by demuxers or other elements that can offer a 
“collection” of streams

– Does not need to have a GstPad associated

● GST_MESSAGE_STREAM_COLLECTION
– User, application, bin, can be informed of available streams

● Not tied to playbin
– Got a custom pipeline ? Win



Centricular

GstStreamCollection

GstStreamCollection *gst_stream_collection_new (const gchar *upstream_id);

const gchar *gst_stream_collection_get_upstream_id (GstStreamCollection 
*collection);

guint gst_stream_collection_get_size (GstStreamCollection *collection);
GstStream *gst_stream_collection_get_stream (GstStreamCollection *collection, 
guint index);

gboolean gst_stream_collection_add_stream (GstStreamCollection *collection,
   GstStream *stream);



Centricular

Selecting Streams
● GST_EVENT_SELECT_STREAMS

– List of stream-id to be selected

● Elements can now reliably know which streams will be needed 
downstream
– Avoid processing (decoding anyone ?)

– Hidden streams to activate (Alternate HLS/DASH, switching DVB 
channel, ...)

● Not tied to playbin
– Custom pipeline ? Win again



Centricular

decodebin3
● Because it's been 9 years since I committed decodebin2
● More seriously

– Use the new stream API to reduce processing as much as possible

– Re-use as many elements as possible

– Reduce buffering

– … and more



Centricular

decodebin3

Mu
lti
Q

VDec

ADec2

parsebin

Demuxertypefind

Parser

Parser

Parser



Centricular

GstParseBin
● One single input sink pad
● Recursively figures out “decodable” elements needed

– Demuxers, depayloaders, parsers … but not decoders

● No queueing
● Creates/Posts GstStreamCollection/GstStream if the element 

didn't create it
– All pipelines can get new API support \o/

● Longer term : Reconfigurable
– On input changes, re-use elements if possible, else switch



Centricular

decodebin3
● Output of GstParseBin(s) fed to multiqueue

– Parsed Elementary Streams

– Multiqueue “slots” (sink + src pad) are typed (audio, video,…)

– If available slot of proper type, re-use, else create new one

● Selection is done post-multiqueue
– Only thing that (might) need to be plugged is a decoder

– By default only expose/decode one stream of each type

– But you can also expose everything...

– Or just what you selected via GST_EVENT_SELECT_STREAMS



Centricular

Selecting Streams (from upstream)
● Startup example

– 3 streams from GstParseBin : video1, audio1, audio2

– Do a pre-emptive decision of which streams to use
● Pending selection : video1, audio1

– Feed all streams through multiqueue

– On multiqueue output, check STREAM_START / CAPS
● If in Pending selection : create decoder and expose

● Else leave unlinked



Centricular

Switching Streams
● GST_EVENT_SELECT_STREAMS

– Ex : “video1”, “audio2”

– Compare available, active, pending and requested streams.

– Need to switch audio1 to audio2

– Put audio2 in pending selection

– Set idle probe on multiqueue output of audio1
● Unlinks from decoder

● Send GST_EVENT_RECONFIGURE to audio2 multiqueue source pad

● Audio2 multiqueue source pad will use same logic as before



Centricular

Re-using decoders
● STREAM_START / CAPS on multiqueue source pad

– Checks if in requested / pending selection

– Check if there is an output available to be re-used

– Check if decoder can accept CAPS
● If so, just link

● If not, unlink, insert new decoder, link

● No pad removed/added on decodebin3 output
– Just a stream that reconfigures itself

– Simpler usage in any pipeline



Centricular

Demuxer handling
● Decodebin3 backwards compatible with current behaviour
● Demuxers (ex: tsdemux) can be smarter

– Ex: Video stream remains the same, but other streams change

– No need to remove/add pad for the video stream
● No breakage in data stream

● Any element can add/remove streams at any time
– Ex: [CC] parsing in video parsers



Centricular

Decodebin3 multiple input
● A “media” might be composed of several different input streams

– RTSP, Pro-cinema (separate files for audio/video), extra subtitle files, 
…

– Instead of creating multiple decodebin, just use one

● Decodebin3 has GST_PAD_REQUEST sink pads
– Feel all streams corresponding to one media

– Commmon interleave (one multiqueue)

– One GstStreamCollection (to rule them all)

● No longer dependent on playbin



Centricular

Gapless playback in decodebin3
● Can we re-use more elements ?
● Just re-use elements for gapless playback
● When EOS reaches all multiqueue slot input, emit 'about-to-

finish'
– Users have a chance to change the input of decodebin3

– Earlier than with legacy playbin (EOS on output of decodebin)

● GstParseBin reconfigurable
– Handles the reconfiguration

– And we just get new streams… as if it was a demuxer update



Centricular

Playbin and uridecodebin
● Shifted most of the logic to decodebin3 (stream selection, 

gapless, multi-input support)
● Should not require new elements… but we'll see



Centricular

Summary
● Avoid as much unneeded processing as possible (CPU, MEM, 

I/O, …)
● Re-use as many elements as possible
● Still WIP



Centricular

Questions ?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

