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A quick hardware overview



DMM/Tiler

• Like a system-wide GART
– Provides a contiguous view of memory to 

various hw accelerators: IVAHD, ISS, 
DSS

• Provides tiling modes for enhanced 
memory bandwidth efficiency
– For initiators like IVAHD which access 

memory in 2D block patterns

• Provides support for rotation
– Zero cost rotation for DSS/ISS access in 

0º/90º/180º/270º orientations (with 
horizontal or vertical reflection)



IVA-HD

• Multi-codec hw video encode/decode
– H.264 BP/MP/HP encode/decode
– MPEG-4 SP/ASP encode/decode
– MPEG-2 SP/MP encode/decode
– MJPEG encode/decode
– VC1/WMV9 decode
– etc



DSS – Display Subsystem

• Display Subsystem
– 4 video pipes, 3 support scaling and YUV
– Any number of video pipes can be attached to one of 3 “overlay manager” to 

route to a display



Kernel infrastructure:
drm/gem, rpmsg+dce, dmabuf



DRM Overview

• DRM → Direct Rendering Manager
– Started life heavily based on x86/desktop graphics card architecture
– But more recently has evolved to better support ARM and other SoC 

platforms

• KMS → Kernel Mode Setting
– Replaces fbdev for more advanced display management
– Hotplug, multiple display support (spanning/cloning)
– And more recently support for overlays (planes)

• GEM → Graphics Execution Manager
– But the important/useful part here is the graphics/multimedia buffer 

management



• Models the display hardware as:
– Connector → the thing that the display connects to

• Handles DDC/EDID, hotplug detection

– Encoder → takes pixel data from CRTC and encodes it to a format suitable for 
connectors

• ie. HDMI, DSI, DPI

– CRTC → takes the DMA engine that scans out the framebuffer

– Plane → an overlay
– Framebuffer → just a piece of memory

• A GEM object plus attribute: fourcc, width, height, pitch

• See: http://www.ideasonboard.org/media/drm/index.html

DRM - KMS



• Clone Mode

• Virtual Display

KMS - Multi-display
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omapdrm

• DRM driver for OMAP platforms

• Supports the KMS API for multi-display, hotplug, etc

• Supports GEM buffers
– Can be dynamically mapped to DMM on demand, for example when 

passing a buffer to hw decoder, or scanning out a fb
– Handles mmap of cached buffers

• Page faulting + PTE shootdown for tracking dirty pages

– Handles mmap of 2D tiled buffers
• Usergart + page faulting + PTE shootdown for giving userspace 4KiB aligned view 

of 2D tiled buffers at potentially odd alignments



DCE – Distributed Codec Engine

• We eventually came to our senses about a sane way to use video 
decode/encode accelerators: DCE

• OpenMAX → DCE
– Removes a layer + many kloc
– Simplified IPC, fewer IPC/frame
– The CE engine API beneath OMX is actually 

a quite sensible API
• Doesn't try to hide things like locked reference 

frames
• Synchronous, gets rid of lots of possible race 

conditions

– Results is fewer lines of code in gst elements 
working around OMX



rpmsg

• A simple kernel level framework for IPC with coprocessors
– No userspace component
– No userspace API
– Considerably smaller/simpler than syslink
– Because it is kernel level, omapdce driver can use linux kernel frameworks for IVAHD 

power management, dynamic buffer mapping/eviction to DMM/TILER

• Based on virtio kernel infrastructure

• Handles firmware loading

• Designed to support more than just OMAP

• Upstream
– Core infrastructure is upstream, OMAP specific parts are waiting for some IOMMU 

enhancements



rpmsg+dce
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dmabuf

• Kernel mechanism for sharing buffers between devices
– Based on 'struct file'

• Provides reference counting
• And file descriptor, for passing between processes, and cleanup if process exits

– Provides kernel level APIs for drivers to attach buffers, get address 
(scatterlist), kmap, etc

• No direct userspace API
– Existing devices can import/export dmabuf handles (fd)

• V4L2: V4L2_MEMORY_FD
• DRM: DRM_IOCTL_PRIME_{HANDLE_TO_FD, FD_TO_HANDLE}

– dmabuf fd's can be mmap()d for userspace access
• We'll take advantage of this in GStreamer 1.0 to avoid unnecessary mmap
• For cached buffers on non-coherent architectures, exporting device must do some 

magic



dmabuf usage flow (example)

1) allocation

2) dma_buf_export(): request the creation of a dma_buf for previously allocated buffer.

3) dma_buf_fd(): provides a fd to return to userspace.

4) fd passed to video decoder.

5) dma_buf_get(fd): takes ref and returns 'struct dma_buf'.

6) dma_buf_attach() + dma_buf_map_attachment(): to get info for dma

– a) dev->dma_parms should be expanded to tell if receiving device needs contiguous memory or 
any other special requirements

– b) allocation of backing pages could be deferred by exporting driver until it is known if importing 
driver requires contiguous memory.. to make things a bit easier on systems without IOMMU
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dmabuf example
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Blinky s***..
putting pixels on the screen



KMS overlays – Keeping it simple

• If you don't need a display server, use hw overlays (kms planes) 
directly

• Support in GStreamer via kmssink

• Can attach single fb to multiple planes for multi-display
– Use different src coords to different plane → crtc → encoder → connector to 

span multiple displays
– Not yet supported in kmssink but all the kernel bits are there



X11 – Traditional Blinky

• Traditionally Xv extension used for rendering video
– Xshm buffers: 2x memcpy

• Not terribly good for hw decoders that have special memory requirements
• And not terribly good for GPUs either.. need a copy into a GPU accessible buffer or at least 

map/unmap on every frame

• DRI2
– Used under the hood by VAAPI/VDPAU.. but can only support unscaled RGB 

buffers, so GPU blit YUV->RGB + scaling done on client side

• DRI2Video
– Combines the ideas of Xv and DRI2
– Xserver (DDX driver) allocates GEM buffer and passes to client process

• Allows us to abstract DMM/TILER stuff in omapdrm kernel driver

– But unlike DRI2, the buffer can be YUV (incl. Multi-planar), sized according to video 
size, not scaled drawable size, and cropped

– Can support zero-copy overlays too: display can scanout GEM buffers
• But not implemented yet



X11 – dri2video

539MiB/s (no comp)
1139MiB/s (comp)

239MiB/s (no comp)
839MiB/s (comp)

NV12->RGB = (1920*1080*1.5) + (1280*1024*4) → 239MiB/s
Swap/blit = (1280*1024*4) * 2 → 300MiB/s
Composite = (1280*1024*4) * 2 → 300MiB/s
Presentation blit = (1280*1024*4) * 2 → 300MiB/s

NV12->RGB = (1920*1080*1.5) + (1280*1024*4) → 239MiB/s
Swap/blit = (1280*1024*4) * 2 → 300MiB/s
Composite = (1280*1024*4) * 2 → 300MiB/s
Presentation blit = (1280*1024*4) * 2 → 300MiB/s

Example memory bandwidth savings based on 1080p 30fps NV12 video rendered to 
nearly fullscreen window on 1280x1024 display



Wayland – Simply Blinky

• In wayland, no separation of window manager and display server
– This makes use of overlays much easier.. which weston already supports

• With wl_drm protocol, we can push YUV buffers directly to server
– Similar in result to dri2video.. but less copies due to window manager for 

compositing.  And no tearing!

– Either use overlay or do a YUV->RGB as part of the final composition

239MiB/s



Bringing it all together in 
GStreamer



Current status in GStreamer

• Our primary supported environment is (sadly) still GStreamer 0.10
– Customers still using 0.10
– Apps support in distros for 1.0 is not there yet
– And we don't have the manpower to fully test and support both 0.10 and 1.0

• Some experimental support for 1.0
– And hopefully we can drop 0.10 and switch to 1.0 “soon”



The transition to 1.0

• To better prepare for 1.0, we've made a few changes
– Using “quark” mechanism to attach what would be GstMeta

• Public meta: 
– dmabuf fd
– cropping coordinates

• Per-element private mapping data
– GEM handles for decoders/encoders
– DRM fb-id's for kmssink
– DRI2 attachment point for dri2videosink
– eglImage for GL based renders (xbmc, gst-clutter)

– A common GstDRMBufferPool
• Attaches GstDmaBuf quark/meta to buffers
• Allows decoders, sinks, etc, to mostly not care who is allocating the buffer

– dri2videosink needs to subclass GstDRMBufferPool to allocate via xserver



GStreamer + dmabuf (X11)
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GStreamer + dmabuf (Wayland)
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The End
(and demo, time and logistics permitting)
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