
GStreamer and dmabuf

OMAP4+ graphics/multimedia update

Rob Clark

Outline

• A quick hardware overview

• Kernel infrastructure: drm/gem, rpmsg+dce, dmabuf

• Blinky s***.. putting pixels on the screen

• Bringing it all together in GStreamer

A quick hardware overview

DMM/Tiler

• Like a system-wide GART
– Provides a contiguous view of memory to

various hw accelerators: IVAHD, ISS,
DSS

• Provides tiling modes for enhanced
memory bandwidth efficiency
– For initiators like IVAHD which access

memory in 2D block patterns

• Provides support for rotation
– Zero cost rotation for DSS/ISS access in

0º/90º/180º/270º orientations (with
horizontal or vertical reflection)

IVA-HD

• Multi-codec hw video encode/decode
– H.264 BP/MP/HP encode/decode
– MPEG-4 SP/ASP encode/decode
– MPEG-2 SP/MP encode/decode
– MJPEG encode/decode
– VC1/WMV9 decode
– etc

DSS – Display Subsystem

• Display Subsystem
– 4 video pipes, 3 support scaling and YUV
– Any number of video pipes can be attached to one of 3 “overlay manager” to

route to a display

Kernel infrastructure:
drm/gem, rpmsg+dce, dmabuf

DRM Overview

• DRM → Direct Rendering Manager
– Started life heavily based on x86/desktop graphics card architecture
– But more recently has evolved to better support ARM and other SoC

platforms

• KMS → Kernel Mode Setting
– Replaces fbdev for more advanced display management
– Hotplug, multiple display support (spanning/cloning)
– And more recently support for overlays (planes)

• GEM → Graphics Execution Manager
– But the important/useful part here is the graphics/multimedia buffer

management

• Models the display hardware as:
– Connector → the thing that the display connects to

• Handles DDC/EDID, hotplug detection

– Encoder → takes pixel data from CRTC and encodes it to a format suitable for
connectors

• ie. HDMI, DSI, DPI

– CRTC → takes the DMA engine that scans out the framebuffer

– Plane → an overlay
– Framebuffer → just a piece of memory

• A GEM object plus attribute: fourcc, width, height, pitch

• See: http://www.ideasonboard.org/media/drm/index.html

DRM - KMS

• Clone Mode

• Virtual Display

KMS - Multi-display

FB

FBFB

CRTC

CRTC Encoder

Encoder Connector

Connector

(0,0)(0,0)

FB CRTC

CRTC Encoder

Encoder Connector

Connector

(0,0)

(0,480)

omapdrm

• DRM driver for OMAP platforms

• Supports the KMS API for multi-display, hotplug, etc

• Supports GEM buffers
– Can be dynamically mapped to DMM on demand, for example when

passing a buffer to hw decoder, or scanning out a fb
– Handles mmap of cached buffers

• Page faulting + PTE shootdown for tracking dirty pages

– Handles mmap of 2D tiled buffers
• Usergart + page faulting + PTE shootdown for giving userspace 4KiB aligned view

of 2D tiled buffers at potentially odd alignments

DCE – Distributed Codec Engine

• We eventually came to our senses about a sane way to use video
decode/encode accelerators: DCE

• OpenMAX → DCE
– Removes a layer + many kloc
– Simplified IPC, fewer IPC/frame
– The CE engine API beneath OMX is actually

a quite sensible API
• Doesn't try to hide things like locked reference

frames
• Synchronous, gets rid of lots of possible race

conditions

– Results is fewer lines of code in gst elements
working around OMX

rpmsg

• A simple kernel level framework for IPC with coprocessors
– No userspace component
– No userspace API
– Considerably smaller/simpler than syslink
– Because it is kernel level, omapdce driver can use linux kernel frameworks for IVAHD

power management, dynamic buffer mapping/eviction to DMM/TILER

• Based on virtio kernel infrastructure

• Handles firmware loading

• Designed to support more than just OMAP

• Upstream
– Core infrastructure is upstream, OMAP specific parts are waiting for some IOMMU

enhancements

rpmsg+dce

User

Kernel

mailbox

remoteproc

iommu

MessageQCopy

DCE

SysBIOS

virtio_vring VirtQueuevirtio

Interrupt

omap_rpmsg

omapdce

virtio_rpmsg_bus

hwspinlock

firmware

libdce

omapdrm/GEM

(android+openmax based solution has a similar picture with many more boxes)

IVAHD

dmabuf

• Kernel mechanism for sharing buffers between devices
– Based on 'struct file'

• Provides reference counting
• And file descriptor, for passing between processes, and cleanup if process exits

– Provides kernel level APIs for drivers to attach buffers, get address
(scatterlist), kmap, etc

• No direct userspace API
– Existing devices can import/export dmabuf handles (fd)

• V4L2: V4L2_MEMORY_FD
• DRM: DRM_IOCTL_PRIME_{HANDLE_TO_FD, FD_TO_HANDLE}

– dmabuf fd's can be mmap()d for userspace access
• We'll take advantage of this in GStreamer 1.0 to avoid unnecessary mmap
• For cached buffers on non-coherent architectures, exporting device must do some

magic

dmabuf usage flow (example)

1) allocation

2) dma_buf_export(): request the creation of a dma_buf for previously allocated buffer.

3) dma_buf_fd(): provides a fd to return to userspace.

4) fd passed to video decoder.

5) dma_buf_get(fd): takes ref and returns 'struct dma_buf'.

6) dma_buf_attach() + dma_buf_map_attachment(): to get info for dma

– a) dev->dma_parms should be expanded to tell if receiving device needs contiguous memory or
any other special requirements

– b) allocation of backing pages could be deferred by exporting driver until it is known if importing
driver requires contiguous memory.. to make things a bit easier on systems without IOMMU

Video
decoder

Graphics
stack

dma_buf

User

Kernel

CMA
(optional)

1

2

3

4

5

6

dmabuf example

Camera App

DRM GEM
KMS

User space

Kernel
space

GPU

Memory

v4l2srcX11
DRI2

(video) fd

V4L2

dr i2
s in

k
camera

struct dma_buf

Blinky s***..
putting pixels on the screen

KMS overlays – Keeping it simple

• If you don't need a display server, use hw overlays (kms planes)
directly

• Support in GStreamer via kmssink

• Can attach single fb to multiple planes for multi-display
– Use different src coords to different plane → crtc → encoder → connector to

span multiple displays
– Not yet supported in kmssink but all the kernel bits are there

X11 – Traditional Blinky

• Traditionally Xv extension used for rendering video
– Xshm buffers: 2x memcpy

• Not terribly good for hw decoders that have special memory requirements
• And not terribly good for GPUs either.. need a copy into a GPU accessible buffer or at least

map/unmap on every frame

• DRI2
– Used under the hood by VAAPI/VDPAU.. but can only support unscaled RGB

buffers, so GPU blit YUV->RGB + scaling done on client side

• DRI2Video
– Combines the ideas of Xv and DRI2
– Xserver (DDX driver) allocates GEM buffer and passes to client process

• Allows us to abstract DMM/TILER stuff in omapdrm kernel driver

– But unlike DRI2, the buffer can be YUV (incl. Multi-planar), sized according to video
size, not scaled drawable size, and cropped

– Can support zero-copy overlays too: display can scanout GEM buffers
• But not implemented yet

X11 – dri2video

539MiB/s (no comp)
1139MiB/s (comp)

239MiB/s (no comp)
839MiB/s (comp)

NV12->RGB = (1920*1080*1.5) + (1280*1024*4) → 239MiB/s
Swap/blit = (1280*1024*4) * 2 → 300MiB/s
Composite = (1280*1024*4) * 2 → 300MiB/s
Presentation blit = (1280*1024*4) * 2 → 300MiB/s

NV12->RGB = (1920*1080*1.5) + (1280*1024*4) → 239MiB/s
Swap/blit = (1280*1024*4) * 2 → 300MiB/s
Composite = (1280*1024*4) * 2 → 300MiB/s
Presentation blit = (1280*1024*4) * 2 → 300MiB/s

Example memory bandwidth savings based on 1080p 30fps NV12 video rendered to
nearly fullscreen window on 1280x1024 display

Wayland – Simply Blinky

• In wayland, no separation of window manager and display server
– This makes use of overlays much easier.. which weston already supports

• With wl_drm protocol, we can push YUV buffers directly to server
– Similar in result to dri2video.. but less copies due to window manager for

compositing. And no tearing!

– Either use overlay or do a YUV->RGB as part of the final composition

239MiB/s

Bringing it all together in
GStreamer

Current status in GStreamer

• Our primary supported environment is (sadly) still GStreamer 0.10
– Customers still using 0.10
– Apps support in distros for 1.0 is not there yet
– And we don't have the manpower to fully test and support both 0.10 and 1.0

• Some experimental support for 1.0
– And hopefully we can drop 0.10 and switch to 1.0 “soon”

The transition to 1.0

• To better prepare for 1.0, we've made a few changes
– Using “quark” mechanism to attach what would be GstMeta

• Public meta:
– dmabuf fd
– cropping coordinates

• Per-element private mapping data
– GEM handles for decoders/encoders
– DRM fb-id's for kmssink
– DRI2 attachment point for dri2videosink
– eglImage for GL based renders (xbmc, gst-clutter)

– A common GstDRMBufferPool
• Attaches GstDmaBuf quark/meta to buffers
• Allows decoders, sinks, etc, to mostly not care who is allocating the buffer

– dri2videosink needs to subclass GstDRMBufferPool to allocate via xserver

GStreamer + dmabuf (X11)

omapdrm GEM
KMS

User space

Kernel
space

GPU

Memory

bufferpool

dri2
(video) fd

omapdce

dr i2
s in

k
struct dma_buf

pvr DSS

codec

dce

libdce

srcgst-ducati

M3

X11

xf86-video-omapEXA

GStreamer + dmabuf (Wayland)

omapdrm GEM
KMS

User space

Kernel
space

GPU

Memory

bufferpool

weston
compositor-drm

wl_drm
fd

omapdce

w
aylands in k

struct dma_buf

pvr DSS

codec

dce

libdce

srcgst-ducati

M3

The End
(and demo, time and logistics permitting)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Google IPC Modules
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

