ALSA Project Status Update

Takashi lwal <tiwai@suse.de>

SUSE Linux Products GmbH, Nuremberg, Germany

Gstreamer Conference Aug. 28, 2012, San Diego

Outline

O Introduction for ALSA
O Pain points

O Recent and new updates

ALSA: Introduction

ALSA: Myths

| see an announcement of ALSA grand conference.

O True... but not ours. We aren’t that cut.
O Alpaca Llama Show Association

ALSA: Myths

| heard ALSA implementation on D-Bus. Is it true?

O Sort of... but not ours. It’s driving cars.
O Autom viles Luarca, S.A

ALSA: Myths

So, ALSA is about soft things?

(0 Sort of... but not like below.
O We are dealing only with device driver software.

ALSA: Brief History

OALSA = Advanced Linux Sound Architecture
O Project started by Jaroslav Kysela in 1999

O Major code change in ALSA 0.9.x series
o Vicious alsa-lib APl was defined at this moment

O Merged to Linux 2.5 kernel, replacing OSS

O HD-audio since 2.6.12
O ASoC merged in 2.6.21

ALSA Big Picture

PCM Mixer MIDI User-Space
ALSA Library NS
Plugins
User-space
PCM Control MIDI Kernel-space

Core Layer

Card Driver Card Driver

Bigger Picture

App KDE
phonon App
gstreamer
alsasink alsasrc PulseAudio
: App
App plugins | pulse
U
v plugin
ALSA-lib

Kernel

Bigger Picture: ALSA-native Routing

App KDE
I) P4 phonon App
P4
»
gstreamer
PulseAudio

alsasink alsasrc

N

APP ———p plugins | pulse
plugin

hw

ALS{-Iib

Kernel

Bigger Picture: PA-native Routing

App KDE
honon
I o LE App
P4
- I
gstreamer
alsasink alsasrc| <—p PulseAudio

|

App plugins | pulse App
plugin

hw

ALS{-Iib

Kernel

Bigger Picture: Indirect PA Routing

ApPp KDE
I ,, phonon App
4
» $

gstreamer /
alsasink alsasrc PulseAudio
App plugins | pulse |4 . App

v plugin

ALS{-Iib

Kernel

ALSA Kernel Driver

O Highly modularized

O Core parts
O Card: the toplevel management
O Control: control elements for mixer, etc
O PCM: you know it
o Timer, rawmidi, hwdep, seq, ...
O OSS emulation modules

O Driver parts
O PCI, USB, ASoC, legacy drivers...

ALSA Kernel Driver Statistics

O Steadily active development over years

O Most active part: ASoC
O HD-audio tends to small commits, one large cleanup

ALSA Kernel Driver Statistics

LOC

ALSA driver LOC

80000

(0000 ¢

60000 T

50000 |

ORast
B HDA
B AsolC

ADDOO 7

30000 =

20000

10000

B V2635 V2637 V2633 V31 V33 V35

R
V2634 V2636 V2638 V30 V3.2 W34

Chs
o

D w
He

D13
=)

Kemel varsion

ALSA Kernel Driver Statistics

ammit numbars

800

o0

BOO

500

400

300 ¢

200

100

Commit numbers

BRest
EHDA
mAsoC

28 29 30 31 32 33 M 3 36 N 3B 38 40 41 42 43 44 45

Eernal version

Major Driver Components

O HD-audio
O Controller driver (snd-hda-intel)
O Codec library module (snd-hda-codec)
O Codec drivers (snd-hda-codec-*)

O0ASoC
O ALSA sub-layer, targeted for embedded devices
O ASoC core: PCM, DAPM, using regmap
O Individual codec drivers (over 100)
O Individual machine drivers

OUSB-audio

O Single generic module
> For both USB audio v1 and v2

ALSA-Library - User-Space Layer

OAPI entry point

O Plug-ins
O Absorbs the hardware incompatibility
> Format, sample rate conversion, down/up-mixing
O Soft-mixing and multiplexing from/to multiple streams
O Software volume control
O Real-time encoding
O Communication with user-space drivers
> JACK, PulseAudio, Bluetooth, ...

O Alternatives

O Android’s own implementation: tinyALSA
O SALSA-library for embedded devices

ALSA-lIb API functions

O Bold, gothic and subtle

O Represent almost 1:1 for the driver implementation
O Pretty stable over years

O Most data types are not exported to outside

O Only accessor functions are provided
snd_pcm_hw_params_get buffer_size near()
snd_pcm_hw_params_set_buffer_size()

O Documentation still in a poor quality
O Volunteer?

Abstraction Model: PCM

O Card / device / stream / direction / substream

O A device file per stream direction level
O A device may contain multiple substreams

O Buffer / period model

OPCM states

O setup, prepared, running, paused, xrun, suspended

Drainin

Open i
l i \ Xrun

Setup g Prepared g Runnin g &
N

l ‘ l I Paused
Close
spend

PCM (cont’d)

O Two Staged parameter setups
O hw_params
> format, channels, rates, buffer/period sizes, etc
O SW_params
> start/stop threshold, alignment, etc

O Pause, suspend/resume

O H/W-dependent implementation
O Apps need to handle fallback cases

O Mmap support
O sequence: begin / modify / commit
O Channel information for non-interleaved streams
> first offset & step size for each channel

Abstraction: Mixers

O Control API

O An array of control elements
> integer, boolean, enum list, byte array, IEC958
O ID: name string, iface type, dev#, index#

O Mixers are a group of control elements
O Kernel-level: no mixer abstraction
> Grouping done in alsa-lib
O Standard naming rules
>"... Playback Volume", "... Capture Switch"
O Standard name components
> "Master"”, "Front", "Mic"

Extra Information

O Control elements are not only for mixers

O Provide also card, PCM and other stuff
> |[FACE_CARD, IFACE_PCM, ...

OA TLV data assigned to each control element

O Usually representing dB information
O Can be extended to any type in theory

OALSA-lib dB data handle

O Better abstracted

O For raw TLV, control and mixer APIs
snd_tlv_get dB_range(), snd_tlv_get_dB(), ...
snd_ctl_get _dB_range(), snd_ctl _convert to dB(), ...
snd_mixer_selem_get playback dB(), ...

Configuration files

O System-wide or user config files
O /etc/asound.conf, ~/.asoundrc

O A flexible (but cryptic) configuration syntax

pcm.mypcm {
type hooks
slave.pcm "hw:0"
hooks.O {
type ctl_elems
hook args [
{ name "IEC958 Playback Switch"
value true }

O Can override the "default" PCM, control, etc
pcm.!default "pulse”

Gstreamer Integration

O Fairly straightforward, simple and good
O Handles PCM and mixer

O Direct lookup of h/w devices for discovery

Pain Points

PCM Configuration

Ohw_params dependencies
O Params: period, buffer, format, channels, rate
O Units: bytes, frames, time
> They restrict (and conflict) with each other
O Define preferred things first
> For a larger buffer size, set buffer size first

O Available parameters depend on H/W & setup

O Hardware: period-base and timer-base updates
> Different periods and wake-up accuracy

Mess About Mmap

O A big contig. pages for audio buffer
O No small page map/unmap like others (e.g. network)

O Cache coherency problem

O x86: easy one, coherent architecture
O ARM, MIPS, etc: non-coherent
> Overhead in kernel handling

O Drivers with vmalloc buffer

O e.g. USB-audio driver
O Lack of proper coherent page allocations

Xrun?

0 Sound glitches
O Buffer underrun/overrun (xrun)
O CPU scheduling latency by kernel
> RT-task priority
O Classical approach: bigger buffer, more periods
> More periods -> more CPU wakeups

O PulseAudio

O Own timer-based scheduling

O Heavily relying on the accurate stream position
> Often problems on HD-audio
> Many workarounds in the driver code

S/PDIF, HDMI, DP

O IEC958 status bits

O Non-audio, category, copyright, etc.

O Managed by control elements in kernel driver
> No good mapping to PCM stream -> TLV?

O Passed via arguments of PCM open

ON:M connections for recent hardware

O More pins (sinks) than converters (sources)
O Connections are set dynamically at open
O No direct connection with video: EDID check?

O Non-PCM streams

O IEC958 status bits must be set properly
O HBR: need fixed (eight) channels and maps

Device Management

O Indexed device registration

O Doesn't fit with udev well
O index=0 isn’'t always the best choice
> HDMI can be on the earlier PCI slot

O Device listing API exists
Oe.g. "aplay -L"
O Rarely used in the end

0 More mess by fiddling with ~/.asoundrc

Multi-stream Mixing

O PulseAudio Is there, isn’t it?
O Dmix is usable, not doesn’t cover all H/W

Inconsistent Mixer Elements

O Mixer names are ambiguous

O Master: does it really control over all volumes?
O Front: is a front speaker or a front channel?

O Too many controls
O Many drivers provide own controls

O Simplification possible, but not fully standardized

O HD-audio: mostly consistent now
O ASoC: doesn’t care, take use-case approach

Recent and New Developments

UFDATE

=K

Use Case Manager (UCM)

O A high level device management abstraction

O Originally targeted mobile phones
O Since alsa-lib 1.0.24
> Formerly "ALSA Scenario" by Liam Girdwoord & co

O Hardware routing and controls per use case

O e.g. "phone call" vs "music"
O Source/sink discovery
O Master volume control definition

0 Availability
O alsaucm tool in alsa-utils package
O Integration to PulseAudio

UCM Example

SectionUseCase."HiFi" {
SectionVerb {
EnableSequence [
cdev "hw:0"
cset "name="Headphone Playback Switch’, on"
cset "name="Headphone Playback Volume’, 20,20"

]

DisableSequence |

]
Value {

TQ "Music"
PlaybackPCM "hw:0,0"
PlaybackVolume "name="PCM Playback Volume’ 90,90"

}
}
}

UCM Example (cont’'d)

SectionUseCase."Voice" {
File "voice.conf"

}

ValueDefaults {
PlaybackCTL "hw:0"

}

SectionDefaults |
exec "echo This is an example UCM config"
cdev "hw:0"
cset "name="Master Playback Switch’ on"

]

Compression Offload

O For offloaded DSP handling

O Playing compressed format by DSP without CPU load
O Kenrel API similar like PCM
O Developed by Vinod Koul, Pierre-Louis Bossart

O Avallability
O Kernel core API integrated since 3.3
> ASoC integration (3.7)
> Intel Medfield driver implementation (3.7)
O Library code in separate git tree

Jack Detection

O Multiple ways for jack detections
O No library APl is provided yet

OVia input device
O As switch to read / notify
O No association with card#

O Via control API

O Only with ALSA API
>".... Jack" control with IFACE_CARD
O ALSA control read / notify

O Via extcon?
O Originated from Android switch class

More PCM Time Adjustments

0 Monotonic timestamp mode support
O Required by PulseAudio

O Upcoming: wallclock timetstamp support

O For precise hardware sample time
O Talk at LPC by Pierre-Louis Bossart

O Open guestion: embed timestamp in stream?

O Asked by V4L guys for long time
O Separate timestamp sync stream?

Improved Power Management

0"No period" PCM mode

O Used by PA, only for certain devices (HD-audio)

O HD-audio power-saving improvements
O Fixed races (since 3.5 kernel)
O Explicit power-saving trigger by parameter change (3.7)
O Runtime PM integration (3.7)

More HD-audio Features

O Improved BIOS auto-parser

O Most bugs can be fixed by defining pins correctly
O Codes have been drastically reduced
O Better jack retasking

O Robust and accurate position reporting

O More workarounds specific to each controller
> Adjustable position_fix option
O Should give better results for PA

O Firmware "patch" loading
O Changing pin config or others without recompiling

More HD-audio Features (cont’'d)

O Debug / QA with emulator

O alsa-info.sh output as base data
O Can track codec registers and control elements
O Automuated QA test by David Henningsson

OO Non-snoop mode (non-cached memory)

O Requirement by recent controller chips
O No support for non-x86 platforms yet

Channel Mapping API

0 So many different standards:

OALSA: FL/FR/RL/RR/C/LFE ...
OMS:FL/FR/C/LFE/RL/RR ..

O Kernel/user access via control AP
O One control per PCM substream
> "Playback Channel Map" with IFACE_PCM
O Query all channel maps via TLV
O Get & set the current channel map via read & write

OALSA-lib implementation
O Simple: handle via int array
O Transparent for plugins
> Automatic correction for route & multi plugins

Channel Mapping API (cont’d)

O Proposed API functions
O Return the list of available channel maps
int **snd_pcm_query_chmaps(snd_pcm_t *pcm);
O Return the current channel map
int *snd_pcm_get_chmap(snd_pcm_t *pcm);
O Set the channel map (optionally, only if h/w supports)
int snd_pcm_set_chmap(snd_pcm_t *pcm, const int *map);

O Still in discussions
O How to manage multiple outputs per channel?
O Different outputs (e.g. speaker, HP) in a single PCM
> Allow to define channel map value in TLV?

Routing Exposure

O Expose connections among H/W components
O For retasking multi-purpose 1/O, etc

O Media controller API

O APl implementation by V4L guys
O ioctl-based kernel API
> Patch proposed by Clemens Ladisch

O ALSA control API

O Embed connections and info in TLV
O Might be too complex, ALSA-centric?

OWhat else?
O Topic at LPC by Marc Brown

Resources

OALSA kernel and build trees

git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound.git
git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/alsa-driver-build.git

OALSA driver snapshot tarball

ftp://ftp.suse.com/pub/people/tiwai/snapshot/alsa-driver-snapshot.tar.gz

OALSA library, utils, firmware, tools tree
git://git.alsa-project.org/alsa-lib
git://git.alsa-project.org/alsa-utils
git://git.alsa-project.org/alsa-firmware
git://git.alsa-project.org/alsa-tools

O SALSA library

git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/salsa-lib.git

