
ALSA Project Status Update

Takashi Iwai <tiwai@suse.de>

SUSE Linux Products GmbH, Nuremberg, Germany

Gstreamer Conference Aug. 28, 2012, San Diego

 Outline

 Introduction for ALSA

 Pain points

 Recent and new updates

ALSA: Introduction

 ALSA: Myths

 I see an announcement of ALSA grand conference.
 True... but not ours. We aren’t that cut.

 Alpaca Llama Show Association

 ALSA: Myths

 I heard ALSA implementation on D-Bus. Is it true?
 Sort of... but not ours. It’s driving cars.

 Automóviles Luarca, S.A

 ALSA: Myths

 So, ALSA is about soft things?
 Sort of... but not like below.

 We are dealing only with device driver software.

 ALSA: Brief History

 ALSA = Advanced Linux Sound Architecture

 Project started by Jaroslav Kysela in 1999

 Major code change in ALSA 0.9.x series
 Vicious alsa-lib API was defined at this moment

 Merged to Linux 2.5 kernel, replacing OSS
 HD-audio since 2.6.12
 ASoC merged in 2.6.21

 ALSA Big Picture

 H/W

User-space

Kernel-space

App App App

ALSA Library

Plugins

PCM Mixer MIDI

Core Layer

PCM Control MIDI

Card Driver Card Driver

H/W

ALSA Kernel API

ALSA API

User-Space
Driver

 Bigger Picture

gstreamer

alsasink alsasrc

ALSA-lib

pulse
plugin

plugins

hw

Kernel

PulseAudioPulseAudio

AppApp KDE

phonon

AppApp

AppApp

AppApp

 Bigger Picture: ALSA-native Routing

gstreamer

alsasink alsasrc

ALSA-lib

pulse
plugin

plugins

hw

Kernel

PulseAudioPulseAudio

AppApp KDE

phonon

AppApp

AppApp

AppApp

 Bigger Picture: PA-native Routing

gstreamer

alsasink alsasrc

ALSA-lib

pulse
plugin

plugins

hw

Kernel

PulseAudioPulseAudio

AppApp KDE

phonon

AppApp

AppApp

AppApp

 Bigger Picture: Indirect PA Routing

gstreamer

alsasink alsasrc

ALSA-lib

pulse
plugin

plugins

hw

Kernel

AppApp KDE

phonon

AppApp

AppApp

PulseAudioPulseAudio

AppApp

 ALSA Kernel Driver

 Highly modularized

 Core parts
 Card: the toplevel management
 Control: control elements for mixer, etc
 PCM: you know it
 Timer, rawmidi, hwdep, seq, ...
 OSS emulation modules

 Driver parts
 PCI, USB, ASoC, legacy drivers...

 ALSA Kernel Driver Statistics

 Steadily active development over years
 Most active part: ASoC
 HD-audio tends to small commits, one large cleanup

 ALSA Kernel Driver Statistics

 ALSA Kernel Driver Statistics

 Major Driver Components

 HD-audio
 Controller driver (snd-hda-intel)
 Codec library module (snd-hda-codec)
 Codec drivers (snd-hda-codec-*)

 ASoC
 ALSA sub-layer, targeted for embedded devices
 ASoC core: PCM, DAPM, using regmap
 Individual codec drivers (over 100)
 Individual machine drivers

 USB-audio
 Single generic module

 For both USB audio v1 and v2

 ALSA-Library - User-Space Layer

 API entry point

 Plug-ins
 Absorbs the hardware incompatibility

 Format, sample rate conversion, down/up-mixing
 Soft-mixing and multiplexing from/to multiple streams
 Software volume control
 Real-time encoding
 Communication with user-space drivers

 JACK, PulseAudio, Bluetooth, ...

 Alternatives
 Android’s own implementation: tinyALSA
 SALSA-library for embedded devices

 ALSA-lib API functions

 Bold, gothic and subtle
 Represent almost 1:1 for the driver implementation
 Pretty stable over years

 Most data types are not exported to outside
 Only accessor functions are provided

 snd_pcm_hw_params_get_buffer_size_near()
 snd_pcm_hw_params_set_buffer_size()

 Documentation still in a poor quality
 Volunteer?

 Abstraction Model: PCM

 Card / device / stream / direction / substream
 A device file per stream direction level
 A device may contain multiple substreams

 Buffer / period model

 PCM states
 setup, prepared, running, paused, xrun, suspended

Prepared Running

Xrun

Draining

Suspended

Paused

Close

Setup

Open

 PCM (cont’d)

 Two staged parameter setups
 hw_params

 format, channels, rates, buffer/period sizes, etc
 sw_params

 start/stop threshold, alignment, etc

 Pause, suspend/resume
 H/W-dependent implementation
 Apps need to handle fallback cases

 Mmap support
 sequence: begin / modify / commit
 Channel information for non-interleaved streams

 first offset & step size for each channel

 Abstraction: Mixers

 Control API
 An array of control elements

 integer, boolean, enum list, byte array, IEC958
 ID: name string, iface type, dev#, index#

 Mixers are a group of control elements
 Kernel-level: no mixer abstraction

 Grouping done in alsa-lib
 Standard naming rules

 "... Playback Volume", "... Capture Switch"
 Standard name components

 "Master", "Front", "Mic"

 Extra Information

 Control elements are not only for mixers
 Provide also card, PCM and other stuff

 IFACE_CARD, IFACE_PCM, ...

 A TLV data assigned to each control element
 Usually representing dB information
 Can be extended to any type in theory

 ALSA-lib dB data handle
 Better abstracted
 For raw TLV, control and mixer APIs

 snd_tlv_get_dB_range(), snd_tlv_get_dB(), ...
 snd_ctl_get_dB_range(), snd_ctl_convert_to_dB(), ...
 snd_mixer_selem_get_playback_dB(), ...

 Configuration files

 System-wide or user config files
 /etc/asound.conf, ~/.asoundrc

 A flexible (but cryptic) configuration syntax
 pcm.mypcm {
 type hooks
 slave.pcm "hw:0"
 hooks.0 {
 type ctl_elems
 hook_args [
 { name "IEC958 Playback Switch"
 value true }

 Can override the "default" PCM, control, etc
 pcm.!default "pulse"

 Gstreamer Integration

 Fairly straightforward, simple and good

 Handles PCM and mixer

 Direct lookup of h/w devices for discovery

Pain Points

 PCM Configuration

 hw_params dependencies
 Params: period, buffer, format, channels, rate
 Units: bytes, frames, time

 They restrict (and conflict) with each other
 Define preferred things first

 For a larger buffer size, set buffer size first

 Available parameters depend on H/W & setup
 Hardware: period-base and timer-base updates

 Different periods and wake-up accuracy

 Mess About Mmap

 A big contig. pages for audio buffer
 No small page map/unmap like others (e.g. network)

 Cache coherency problem
 x86: easy one, coherent architecture
 ARM, MIPS, etc: non-coherent

 Overhead in kernel handling

 Drivers with vmalloc buffer
 e.g. USB-audio driver
 Lack of proper coherent page allocations

 Xrun?

 Sound glitches
 Buffer underrun/overrun (xrun)
 CPU scheduling latency by kernel

 RT-task priority
 Classical approach: bigger buffer, more periods

 More periods -> more CPU wakeups

 PulseAudio
 Own timer-based scheduling
 Heavily relying on the accurate stream position

 Often problems on HD-audio
 Many workarounds in the driver code

 S/PDIF, HDMI, DP

 IEC958 status bits
 Non-audio, category, copyright, etc.
 Managed by control elements in kernel driver

 No good mapping to PCM stream -> TLV?
 Passed via arguments of PCM open

 N:M connections for recent hardware
 More pins (sinks) than converters (sources)
 Connections are set dynamically at open
 No direct connection with video: EDID check?

 Non-PCM streams
 IEC958 status bits must be set properly
 HBR: need fixed (eight) channels and maps

 Device Management

 Indexed device registration
 Doesn’t fit with udev well
 index=0 isn’t always the best choice

 HDMI can be on the earlier PCI slot

 Device listing API exists
 e.g. "aplay -L"
 Rarely used in the end

 More mess by fiddling with ~/.asoundrc

 Multi-stream Mixing

 PulseAudio is there, isn’t it?
 Dmix is usable, not doesn’t cover all H/W

 Inconsistent Mixer Elements

 Mixer names are ambiguous
 Master: does it really control over all volumes?
 Front: is a front speaker or a front channel?

 Too many controls
 Many drivers provide own controls

 Simplification possible, but not fully standardized
 HD-audio: mostly consistent now
 ASoC: doesn’t care, take use-case approach

Recent and New Developments

 Use Case Manager (UCM)

 A high level device management abstraction
 Originally targeted mobile phones
 Since alsa-lib 1.0.24

 Formerly "ALSA Scenario" by Liam Girdwoord & co

 Hardware routing and controls per use case
 e.g. "phone call" vs "music"
 Source/sink discovery
 Master volume control definition

 Availability
 alsaucm tool in alsa-utils package
 Integration to PulseAudio

 UCM Example

 SectionUseCase."HiFi" {

 SectionVerb {

 EnableSequence [

 cdev "hw:0"

 cset "name=’Headphone Playback Switch’, on"

 cset "name=’Headphone Playback Volume’, 20,20"

]

 DisableSequence [

]

 Value {

 TQ "Music"

 PlaybackPCM "hw:0,0"

 PlaybackVolume "name=’PCM Playback Volume’ 90,90"

 }

 }

 }

 UCM Example (cont’d)

 SectionUseCase."Voice" {

 File "voice.conf"

 }

 ValueDefaults {

 PlaybackCTL "hw:0"

 }

 SectionDefaults [

 exec "echo This is an example UCM config"

 cdev "hw:0"

 cset "name=’Master Playback Switch’ on"

]

 Compression Offload

 For offloaded DSP handling
 Playing compressed format by DSP without CPU load
 Kenrel API similar like PCM
 Developed by Vinod Koul, Pierre-Louis Bossart

 Availability
 Kernel core API integrated since 3.3

 ASoC integration (3.7)
 Intel Medfield driver implementation (3.7)

 Library code in separate git tree

 Jack Detection

 Multiple ways for jack detections
 No library API is provided yet

 Via input device
 As switch to read / notify
 No association with card#

 Via control API
 Only with ALSA API

 ".... Jack" control with IFACE_CARD
 ALSA control read / notify

 Via extcon?
 Originated from Android switch class

 More PCM Time Adjustments

 Monotonic timestamp mode support
 Required by PulseAudio

 Upcoming: wallclock timetstamp support
 For precise hardware sample time
 Talk at LPC by Pierre-Louis Bossart

 Open question: embed timestamp in stream?
 Asked by V4L guys for long time
 Separate timestamp sync stream?

 Improved Power Management

 "No period" PCM mode
 Used by PA, only for certain devices (HD-audio)

 HD-audio power-saving improvements
 Fixed races (since 3.5 kernel)
 Explicit power-saving trigger by parameter change (3.7)
 Runtime PM integration (3.7)

 More HD-audio Features

 Improved BIOS auto-parser
 Most bugs can be fixed by defining pins correctly
 Codes have been drastically reduced
 Better jack retasking

 Robust and accurate position reporting
 More workarounds specific to each controller

 Adjustable position_fix option
 Should give better results for PA

 Firmware "patch" loading
 Changing pin config or others without recompiling

 More HD-audio Features (cont’d)

 Debug / QA with emulator
 alsa-info.sh output as base data
 Can track codec registers and control elements
 Automuated QA test by David Henningsson

 Non-snoop mode (non-cached memory)
 Requirement by recent controller chips
 No support for non-x86 platforms yet

 Channel Mapping API

 So many different standards:
 ALSA: FL / FR/ RL / RR / C / LFE ...
 MS: FL / FR / C / LFE / RL / RR ...

 Kernel/user access via control API
 One control per PCM substream

 "Playback Channel Map" with IFACE_PCM
 Query all channel maps via TLV
 Get & set the current channel map via read & write

 ALSA-lib implementation
 Simple: handle via int array
 Transparent for plugins

 Automatic correction for route & multi plugins

 Channel Mapping API (cont’d)

 Proposed API functions
 Return the list of available channel maps

 int **snd_pcm_query_chmaps(snd_pcm_t *pcm);

 Return the current channel map
 int *snd_pcm_get_chmap(snd_pcm_t *pcm);

 Set the channel map (optionally, only if h/w supports)
 int snd_pcm_set_chmap(snd_pcm_t *pcm, const int *map);

 Still in discussions
 How to manage multiple outputs per channel?
 Different outputs (e.g. speaker, HP) in a single PCM

 Allow to define channel map value in TLV?

 Routing Exposure

 Expose connections among H/W components
 For retasking multi-purpose I/O, etc

 Media controller API
 API implementation by V4L guys
 ioctl-based kernel API

 Patch proposed by Clemens Ladisch

 ALSA control API
 Embed connections and info in TLV
 Might be too complex, ALSA-centric?

 What else?
 Topic at LPC by Marc Brown

 Resources

 ALSA kernel and build trees
 git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound.git
 git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/alsa-driver-build.git

 ALSA driver snapshot tarball
 ftp://ftp.suse.com/pub/people/tiwai/snapshot/alsa-driver-snapshot.tar.gz

 ALSA library, utils, firmware, tools tree
 git://git.alsa-project.org/alsa-lib
 git://git.alsa-project.org/alsa-utils
 git://git.alsa-project.org/alsa-firmware
 git://git.alsa-project.org/alsa-tools

 SALSA library
 git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/salsa-lib.git

