
1 

GStreamer and OMAP4 

Rob Clark 



2 

GStreamer and OMAP4 

•  Overview of OMAP4 Multimedia 

•  OMAP4 Multimedia with GStreamer 

•  OpenMAX on OMAP4 



3 

Overview of OMAP4 Multimedia 



4 

DMM/TILER 
•  Resolves Memory Fragmentation 

–  Provides contiguous virtual memory for codecs, camera, and display 
–  Removes the need for IVA-HD, DSS, and ISS to have own MMU 

•  Increased 2D Block Transfer Efficiency 
–  Provides efficient handling of 2D data mapped 

in tiles like YUV macroblocks 
–  Reduces number of SDRAM page accesses 

per block 
–  Increases utilization of an 128b SDRAM burst 
–  Optimize multi-channel memory transfers 

•  Rotation 
–  Provides free rotation/mirroring for display/

camera 
–  0°/90°/180°/270° rotation with horizontal or 

vertical reflection 
Note: Subsystem name is DMM (Dynamic Memory Manager). When 

most people refer to TILER they actually refer to DMM 



5 

Non-TILER Address Space 
•  Non-TILER Address Space (what the ARM sees): 

–  A single view comprised of four 128MiB containers 
–  2D: 8b, 16b, and 32b containers 

–  1D: paged mode container used for compressed bitstream buffers typically 
–  A physical address in this range is sometimes referred to as SSPtr (System Space Pointer) 

•  Notes about how NV12 YUV buffers are mapped 
–  Individual planes (Y and UV) are themselves physically contiguous, but as separate buffers 
–  For software compatibility, NV12 buffers are mapped into virtually contiguous pages, ie. one 

page per row 
•  Because of 2D TILED transformation, not entire 4kb stride need be backed by physical 

memory (so actual memory requirement is not 4KiB * height * 1.5) 
–  A virtual address for SSPtr is sometimes referred to as VSPtr (Virtual Space Pointer) 

•  0x6000 0000 to 0x77ff ffff 
•  16KiB stride for 8b container, 32KiB stride for 16b 

and 32b container 
•  NV12 puts Y plane in 8b container, and UV plane 

in 16b container 
•  Framebuffer in ARGB32 could use 32b container 

(if rotation of GUI is desired) 



6 

TILER Address Space 

•  A separate 4GiB address space consisting 
of the 512MiB view repeated 8 times for all 
possible combinations of 0°/90°/180°/270° 
rotation with optional horizontal or vertical 
mirror 

•  A TILER address is sometimes referred to 
as TSPtr (TILER Space Pointer) 

•  The DSS or ISS can be configured to be 
programmed with a TSPtr instead of normal 
physical address to achieve rotation of 
displayed and/or captured image 



7 

IVA-HD 

•  1080p30 / 1080i60 encode/decode 

•  Fully hardware accelerated codecs (without any intervention of DSP): 
–  H.264 BP/MP/HP encode/decode 
–  MPEG-4: SP/ASP encode/decode 
–  DivX 5.x and higher encode/decode 
–  H.263 Profile 0/3 decode, profile 0 

encode 
–  MPEG-2 SP/MP encode/decode 
–  MPEG-1 encode/decode 

–  VC-1/WMV9 encode/decode 
–  On2® VP6/VP7 decode 
–  RealVideo® 8/9/10 Decode 
–  JPEG/MJPEG baseline encode/decode 
–  H.264 Annex H MVC (stereo) up to 

720p30 



8 

IVA-HD Block Diagram 
•  SyncBox’s (SB) and message bus for synchronizing various engines and sequencers 

•  ICONT1 & ICONT2: ARM968E-S™ 
–  ICONT1: primary sequencer 
–  ICONT2: DMA processor and secondary sequencer 

•  vDMA: video DMA engine 

•  ECD3: entropy coder/decoder engine 
–  Encodes/decodes bitstream 
–  Supports Huffman and arithmetic codes 

•  MC3: motion compensation engine 

•  CALC3: transform and quantization 

  calculation engine 

•  iLF3: loop filter engine 

•  iME3: motion estimation engine 

•  iPE3: intraprediction estimation engine 

•  Shared L2 interface and memory 

•  Controlled by Ducati subsystem: dual Cortex-M3 



9 

DSS – Display SubSystem 

•  Largely similar to OMAP3 plus a few new features 

–  NV12 support for video 
overlays 

–  Support for TILER addresses 
(TSPtr) 

–  Additional video overlay 
(VID3) 

–  Writeback (WB) pipe for 
output to memory 



10 

ISS – Imaging SubSystem 
•  ISP: Image Signal Processor 

–  Similar to OMAP3 
–  Additional resizer (RSZ) allows simultaneous JPEG and video capture (for 

example) 

•  SIMCOP: 
–  New block for image 

 processing (see next slide) 



11 

SIMCOP: Still IMage CoProcessor 
•  Macroblock based memory to memory processing engine 

–  Fetch data to local memories 
–  Process by one or more processing engines 
–  Store back to system memories 
–  Closely coupled to Ducati (Cortex-M3) for control 

 functions (which is why camera driver is on Ducati 
 vs. Linux v4l2 driver) 

–  VLCDJ: JPEG encode/decode 
–  NSF2: High ISO noise filter 
–  LDC: Lens Distortion Correction 
–  DCT: Discrete cosine transform 
–  Two iMX4: general purpose 

imaging accelerators 



12 

OMAP4 Multimedia with 
GStreamer 



13 

Challenges presented by OMAP4 (1/3) 

•  To avoid memcpy’s, all YUV buffers are strided 
–  To realize the performance benefits of TILER 2D buffers, YUV buffers 

require 4KiB rowstride 
–  Additionally, codecs rely on display for cropping codec edges 

•  Same buffer used internally by codec for reference frames is also returned to 
display, to avoid a memcpy 

•  Additionally cropping ensures proper alignment of macroblocks 
–  Similarly with some camera algo’s, such as VSTAB 

•  Frame by frame notification to encoder and display to crop to stabilized frame 
within larger buffer 



14 

Challenges presented by OMAP4 (2/3) 

•  In some cases, the display must perform additional postproc functions 
–  Mirror decoder output around horizontal axis for VP6 from Flash container 
–  VC-1 range mapping 
–  Text or graphic (ex. FD boxes) overlay composition 
–  For legacy video sink elements, a combination of ISS resizer and/or DSS 

WB pipe could be used for post-processing 
•  But how to auto-plug this? 

•  Different codecs have various minimum # of buffer requirements 
–  For example, H.264 has minimum buffer requirements that vary based on 

resolution 
–  If the video sink element is allocating a fixed number of buffers, it must 

query the upstream element for minimum buffer requirements 



15 

Challenges presented by OMAP4 (3/3) 

•  Most existing camera apps hard-code pipeline: 
–  v4l2src and sw based encoder elements 
–  Makes it difficult to just drop in plug-ins and fully leverage ISS and IVA-HD 

•  In some cases, differences in encoded bitstream format 
–  For example asfdemux vs VC-1 decoder 



16 

Current Solutions 
•  Caps:  video/x-raw-yuv-strided 

–  But would be good to combine this with stereo and better interlaced support 
–  Support for rgb/gray via pseudo-fourcc’s would be nice cleanup too 

•  video/x-raw ? 
–  http://gstreamer.freedesktop.org/wiki/NewGstVideo 

•  Events: GST_EVENT_CROP 
–  Downstream serialized event to pass cropping information to display and 

encoders 
–  No solution yet for VC-1 range mapping or VP6 mirroring 
–  No solution yet for non-destructive text/graphic overlays 
–  Won’t work properly if video-sink does not handle the crop event 

•  Queries: GST_QUERY_BUFFERS 
–  Upstream query from video sink to get minimum number to request, for 

given caps, the minimum number of buffers 



17 

Ideas to better handle postproc functions 
•  Introduce interface(s) for postproc functions 

–  If video sink does not implement the interfaces, playbin2 can plug a sw 
fallback element 

–  What about camera scenarios with a tee element?  If display supports 
cropping but encoder does not or vice versa? 

•  Or a query to find which events are supported by downstream 
elements? 
–  Pros: easy to extend with new events later 
–  Cons: handling in case of tee isn’t quite right.. We need to know if *any* 

branch of the tee cannot perform particular postproc functions on its own 

•  Or just put it all in the caps negotiation 
–  Pros: existing negotiation mechanism to determine if buffer consumer can 

perform postproc functions, or if fallback to sw element is required 
–  Cons: caps get bigger and bigger; difficult to extend in the future 
–  Maybe a GParamFlags with bitmask to define avail postproc functions? 



18 

OMAP4 Camera 
•  For playback, pipeline is well abstracted by playbin2 

–  Something similar is needed for camera/capture: camerabin 
–  But camerabin is currently too limited, and not defacto standard (yet) 

•  Solution is to keep enhancing camerabin: 
–  Split capture buffer “plumbing” from image and video encode pipelines: 
–  And autoplug highest ranked camsrcbin… fallback to v4l2camsrcbin 
–  An OMAP4 specific camsrcbin 

would expose enhanced ISS 
features: simultaneous video/jpeg 
capture, VSTAB, 3A, LDC, face 
detect, etc 

–  Most already in photography 
interface 

–  Autoplug encoders based on 
application requested caps filters 

–  See:  http://dev.omapzoom.org/?p=gstreamer/gst-plugins-bad.git;a=shortlog;h=refs/tags/L24.10 

v4l2camsrcbin

video bin

viewfinder bin

image bin

scale/csp 
proc vsink

proc queue venc

mux
audio-

src queue aenc

queue

proc imgenc mdmux filesink

filesink

v4l2src tee

native-video=0
q vscale

q vscale

q vscale



19 

OpenMAX on OMAP4 



20 

Overview of OpenMAX on OMAP4 
•  Distributed OpenMAX (domx) 

–  An RPC shim for an IL client on Chiron to use an OMX IL component on Ducati 

•  Design goals 
–  Fully transparent to IL-Client and OMX components 
–  Work with OMX-Core available in the system 
–  Symmetric framework 
–  Distributed implementation 

•  Features 
–  Supports remote execution of OpenMAX IL 1.X components on AppM3 transparently from 

Chiron in Non-tunnel mode 
–  Supports Multiple instances of OMX 

component 
–  Supports TILER allocated buffers (both 

paged mode and 2D buffers in NV12 format) 
–  Supports new buffers to be used at runtime 

without preannouncement. 
–  Using optimized RCM modes for callbacks 
–  Manages buffer mapping, cache coherence 



21 

OpenMAX Buffer Passing (1/2) 

•  To strictly obey the OpenMAX spec would require buffers to be 
memcpy’d 
–  OpenMAX buffers are pre-negotiated before transition to executing 
–  But GStreamer does not give the decoder/encoder any way to know number 

of buffers or access buffer data ptr before transition to idle (OMX_UseBuffer()) 

•  A solution will be part of OpenMAX 1.y: non-pre-announced (NPA) 
buffers 
–  Pass NULL in on OMX_UseBuffer() call, and then free to reassign pBuffer 

pointer 
–  This is what is used on OMAP4 gst-openmax branch 

•  But this introduces a problem of reference counting 



22 

OpenMAX Buffer Passing (2/2) 

•  Codecs and Locked Buffers 
–  To avoid an internal memcpy, the decoders will lock a buffer to use as a 

future reference frame 
–  But then also return the buffer to be displayed 
–  With NPA there is no longer any guarantee that the IL client (ie. GStreamer) 

will not free, reuse, or write to the buffer that the decoder is still holding 

•  Solution: custom buffer flag and event 
–  A readonly flag on the returned buffer triggers gst-openmax to increment the 

refcnt of the corresponding GstBuffer 
–  A corresponding refcount event is used to inform when the buffer is no 

longer used by the codec, which triggers gst-openmax to unref the 
corresponding GstBuffer 



23 

OpenMAX Buffer Padding 
•  Need a way to indicate to IL client the actual size of buffer vs region of 

interest 

•  Current solution is a bit messy (so don’t consider as final solution) 
–  Use OMX_TI_IndexParam2DBufferAllocDimension to retrieve the required 

buffer size and alignment 
–  While OMX_IndexParamPortDefinition on output port still indicates actual 

size of video picture within larger padded buffer 
•  Fails ungracefully with IL client not aware of custom param 

–  nOffset gives offset to valid picture within frame 
•  nStride = top * nStride + left    for NV12 

•  Preferred solution: 
–  Set width/height from caps on input port (OMX_IndexParamPortDefinition) 
–  Retrieve padded nFrameWidth/Height and nBufferAlignment on output port 
–  Introduce OMX_IndexConfigRegionOfInterest to retrieve cropping 


