
Gstreamer Editing Services

Video Editing in your pocket
(size of pocket not specified)

Edward Hervey
edward.hervey@collabora.co.uk

mailto:edward.hervey@collabora.co.uk

Edward Hervey

● Co-founder of Collabora Multimedia
● FLOSS user since 1995
● GStreamer Hacker since 2003
● PiTiVi video editor
● French (despite not striking)

Primary goal of GES
project

● Provide everything needed to make
editing applications trivial to write

● GNonLin/GStreamer were not enough

● Take GES + GStreamer
● Sprinkle UI on top of it
● => You have an editor !

Secondary Goals

● Complete high-level solution
– Not just editing, but also playback,

encoding, media discovery, …
● Flexible

– Not just one use-case in mind
● NO HACKS !

– Upstream as much as possible

Breakdown

● GES high-level library
– Timeline, Layer, Track
– Convenience objects

● Peripheral libraries/improvements
– libgstprofile, encodebin
– GstDiscoverer
– …

● Lessons learnt
● Ideas and improvements

Gstreamer Editing Services

● Funded by Nokia
● LGPL
● 12 KLOC
● C/GObject, based on GStreamer and

GnonLin.
● Examples, unit tests, API documentation
● High-level API
● Brandon Lewis co-developer
● Meego 1.3
● git.collabora.co.uk user/edward/gst-

editing-services

GESTimeline

● Central object
● Controls Layers and Tracks
● Is a GstBin
● Save/Load

GESTimeline

GESTimelinePipeline

● GstPipeline (like playbin2)
● Takes a GESTimeline
● Playback/Preview (autosinks)
● Rendering (encodebin)
● Thumbnailing/Screenshot

GESTimelineLayer

● Takes «natural» objects
– Files (Video, Audio, Images,..)
– Transitions
– Credits, Titles
– …

● Most user-centric part of the Timeline
● Can add more (ex: above:overlay,

under:soundtrack)
● Media-agnostic

GESTimelineObject

● Basic properties
– Start (When does it go ?)
– Duration (For how long ?)
– In-point (offset in the object)
– Priority (Precedence over other

objects)
● Creates and controls Track object(s)
● Base classes for Sources, Transitions,

Overlays
● Create your own TimelineObject

– Templates

Available TimelineObjects

● GESTimelineFileSource
– Video, Audio, Picture...
– Will figure out duration on its own

● GESTransition
– Crossfade, most SMPTE transitions
– Audio also

GESSimpleTimelineLayer

● List-based API
● Only care about the ordering and duration
● Takes care of adjusting the time position

of all objects

GESTrack

● One per media output (Audio, Video,
Subtitle, …)

● Control what media is outputted
– Raw Audio/Video...
– … or already encoded data

● Only set the Track(s) you want on the
Timeline

– Ex : video-only render/playback

Layer/Track interaction

GESTrackObject

● Produce/Modify the media
● GnlObject under the hood
● Essentially a GstBin

– You can put anything you want in it

GESFormatter

● Timeline load/save (serialization)
● Create your own subclass

GstDiscoverer

● Get information about a URI
● Audio ? Video ?
● Duration ?
● Tags ?
● Codec ? Media properties (width/height...)
● Gst-plugins-base 0.10.31
● Used by GES if needed

libgstprofile and
encodebin

● Make rendering as easy as playback
● Long standing problem
● GstEncodingProfile

– Describe streams and not elements
● Encodebin element

– (dynamic) sink pads based on profile
– Can do passthrough
– Conversion elements

● Proposed for gst-plugins-base
● Bugzilla #627476

gst_video_convert_frame

● Convert a video GstBuffer to any format
● Backported from playback plugin
● Added encoding capabilities (to images)
● GstBuffer* gst_video_convert_frame(
 GstBuffer *buf,
 const GstCaps *to_caps,
 GstClockTime timeout,
 GError **error)

● Gst-plugins-base 0.10.31

GstElementFactoryList

● Backported and improved from playback
plugin

● « Get all factories of a certain <type> [,
that can handle <media> [, in a certain
<direction>]] »

– Ex : Available video fx, encoders,...
● Gstreamer core 0.10.31

Lessons learnt

● Codecs:
– Not the obvious cpu bottleneck
– GstSegment handling is not an

option
● Elements:

– QoS for best end-user experience
● Editing brings complex pipelines !

– Optimisation in core (caps nego,
data passing, …)

● Avoid memcpy (videoscale add-border)
● ORC ORC ORC !

Ideas / Improvements

● GnlComposition scheduling mode
– Always ready (high mem, lowest lat)
– Neighbour ready (med mem, med lat

) + Using QoS
– On demand (lowest mem, high lat)

● Single instance HW accelerated decoders
● pre-render/cache on-demand
● Proxy support

– Of complex operations, sources...
and timelines

Thankyou !

Any Questions ?

