

(c) 2009 Entropy Wave Inc

Orc

David Schleef
Entropy Wave Inc

(c) 2009 Entropy Wave Inc

What is Orc

A system for describing low-level
computation on modern CPUs

(c) 2009 Entropy Wave Inc

Motivation

(c) 2009 Entropy Wave Inc

Motivation

● Want maintainable assembly code

(c) 2009 Entropy Wave Inc

Motivation

● Want maintainable assembly code
● Want to quickly write assembly code

(c) 2009 Entropy Wave Inc

Motivation

● Want maintainable assembly code
● Want to quickly write assembly code

● Want to verify correct behavior

(c) 2009 Entropy Wave Inc

Possible Solutions

● Hand-written assembly
● perfect C compiler
● C with intrinsics
● C with #pragmas (TI C6x, OpenMP)
● Enhanced C (CUDA, GLSL, OpenCL)
● LLVM
● other...

(c) 2009 Entropy Wave Inc

Combinatoric Problem

Video Format Conversion:
23 input formats

23 output formats
9 algorithms

= 4761 functions

Schroedinger motion compensation: 32768 functions
Pixman rendering: >= 1e9 functions

Conclusion: runtime code generation

(c) 2009 Entropy Wave Inc

Orc Parts

● Language for describing computation
● Compiler for language (orcc)

to intermediate form

or to SSE/MMX/C/Neon/etc.
● Orc library (liborc-0.4.so)

Generate and compile functions at runtime

(c) 2009 Entropy Wave Inc

Orc Features

● Active Backends: SSE, MMX, Neon, Altivec, C
● Experimental: C64x, Arm
● Can generate for different CPU microarchitectures
● 194 opcodes
● 8/16/32/64-bit signed/unsigned int
● 32/64-bit float
● 1D, 2D arrays, constant or variable size

(c) 2009 Entropy Wave Inc

Orc Features

● Easy to make Orc optional
● Embedded friendly
●

(c) 2009 Entropy Wave Inc

Opcodes

● standard and saturated arithmetic
● shifting, size and float conversion
● specialized loading: loadoff[bwl], ldreslin[bl]
● accumulation
● div255w: divide by 255 (for compositing)
● divluw: divide 16-bit by 8-bit

(c) 2009 Entropy Wave Inc

Automatic Test Features

● Test and compare
against backup C code or emulation

● Compile and compare
generated source vs. generated binary code

(c) 2009 Entropy Wave Inc

Orc Workflow

Write
.orc source

Compile
with orcc

SSE/MMX
Neon/etc.

C source

liborc-based
C source

Runtime
code

generation

Execute
SSE/MMX

Neon
etc.

Write
liborc-based

C source

Execute
compiled
C code

(c) 2009 Entropy Wave Inc

Orc code
Vertical downscale by factor of 2 (3 taps)
.function cogorc_downsample_vert_cosite_3tap
.dest 1 d1
.source 1 s1
.source 1 s2
.source 1 s3
.temp 2 t1
.temp 2 t2
.temp 2 t3

convubw t1, s1
convubw t2, s2
convubw t3, s3
mullw t2, t2, 2
addw t1, t1, t3
addw t1, t1, t2
addw t1, t1, 2
shrsw t1, t1, 2
convsuswb d1, t1

(c) 2009 Entropy Wave Inc

Generated code

Header:
void cogorc_downsample_vert_cosite_3tap (uint8_t * d1, uint8_t * s1,
uint8_t * s2, uint8_t * s3, int n);

C source (generator function):
void
cogorc_downsample_vert_cosite_3tap (uint8_t * d1, uint8_t * s1, uint8_t *
s2, uint8_t * s3, int n)
{
 OrcExecutor _ex, *ex = &_ex;
 static int p_inited = 0;
 static OrcProgram *p = 0;

 if (!p_inited) {
 orc_once_mutex_lock ();
...
}

(c) 2009 Entropy Wave Inc

Generated code

C source (backup function):
void
static void
_backup_cogorc_downsample_vert_cosite_3tap (OrcExecutor *ex)
{
 int i;
 int8_t * var0;
 const int8_t * var4;
 const int8_t * var5;
 const int8_t * var6;
...
}

Test Code: 110 lines of C code

Assembly Code (optional): 395 for SSE, 216 for Neon

(c) 2009 Entropy Wave Inc

GStreamer Plugins using Orc

adder

audioconvert

videoscale

videotestsrc

volume

deinterlace

videobox

videomixer

cog

colorspace

invtelecine

(c) 2009 Entropy Wave Inc

Schrödinger Orc status

● Used everywhere in schro
● Limited by Orc features

(c) 2009 Entropy Wave Inc

Cairo Orc status

● Orc backend is slightly faster than SSE
● Orc backend handles more operators than SSE

backend
● Everything in place to write a Grand Unified

Compositor function (>1e9 combinations)

(c) 2009 Entropy Wave Inc

videoscale speed comparison

(c) 2009 Entropy Wave Inc

colorspace speed comparison

(c) 2009 Entropy Wave Inc

Emergent Features

What opportunities arise when writing SIMD code
is quick and easy?

(c) 2009 Entropy Wave Inc

Emergent Features

10/16-bit video processing

floating point video processing

quality vs. time tradeoffs

(c) 2009 Entropy Wave Inc

Emergent Features

quality factor

tim
e

p e
r f

ra
m

e
(m

s)

(c) 2009 Entropy Wave Inc

Limitations

● 0.4 ABI is horrific
● Fixed-size arrays everywhere
● Limited number of constants/parameters

(c) 2009 Entropy Wave Inc

Opportunities

● Instruction Scheduler
Reorder instruction stream to improve processor
parallelization

● Multi-register allocation
Do more operations on full registers

● Better handling of register spills/constant loading

(c) 2009 Entropy Wave Inc

Future Directions

● Alignment characteristics for arrays
● Swizzling, shuffling opcodes
● Table lookup opcodes
● Convolution load opcodes
● Non-loop-based functions (for 8x8 DCT)
● Exposure of backend code generators in API
● Macros/high-level opcodes

