
 
(c) 2009 Entropy Wave Inc

Orc

David Schleef
Entropy Wave Inc



 
(c) 2009 Entropy Wave Inc

What is Orc

A system for describing low-level
computation on modern CPUs
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Motivation
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Motivation

● Want maintainable assembly code
● Want to quickly write assembly code

● Want to verify correct behavior
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Possible Solutions

● Hand-written assembly
● perfect C compiler
● C with intrinsics
● C with #pragmas (TI C6x, OpenMP)
● Enhanced C (CUDA, GLSL, OpenCL)
● LLVM
● other...
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Combinatoric Problem

Video Format Conversion:
23 input formats

23 output formats
9 algorithms

= 4761 functions

Schroedinger motion compensation: 32768 functions
Pixman rendering:  >= 1e9 functions

Conclusion: runtime code generation



 
(c) 2009 Entropy Wave Inc

Orc Parts

● Language for describing computation
● Compiler for language (orcc)

to intermediate form

or to SSE/MMX/C/Neon/etc.
● Orc library (liborc-0.4.so)

Generate and compile functions at runtime
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Orc Features

● Active Backends: SSE, MMX, Neon, Altivec, C
● Experimental: C64x, Arm
● Can generate for different CPU microarchitectures
● 194 opcodes
● 8/16/32/64-bit signed/unsigned int
● 32/64-bit float
● 1D, 2D arrays, constant or variable size



 
(c) 2009 Entropy Wave Inc

Orc Features

● Easy to make Orc optional
● Embedded friendly
●
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Opcodes

● standard and saturated arithmetic
● shifting, size and float conversion
● specialized loading: loadoff[bwl], ldreslin[bl]
● accumulation
● div255w: divide by 255 (for compositing)
● divluw: divide 16-bit by 8-bit
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Automatic Test Features

● Test and compare
against backup C code or emulation

● Compile and compare
generated source vs. generated binary code
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Orc Workflow

Write
.orc source

Compile
with orcc

SSE/MMX
Neon/etc.

C source

liborc-based
C source

Runtime
code

generation

Execute
SSE/MMX

Neon
etc.

Write
liborc-based

C source

Execute
compiled
C code
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Orc code
Vertical downscale by factor of 2 (3 taps)
.function cogorc_downsample_vert_cosite_3tap
.dest 1 d1
.source 1 s1
.source 1 s2
.source 1 s3
.temp 2 t1
.temp 2 t2
.temp 2 t3

convubw t1, s1
convubw t2, s2
convubw t3, s3
mullw t2, t2, 2
addw t1, t1, t3
addw t1, t1, t2
addw t1, t1, 2
shrsw t1, t1, 2
convsuswb d1, t1
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Generated code

Header:
void cogorc_downsample_vert_cosite_3tap (uint8_t * d1, uint8_t * s1, 
uint8_t * s2, uint8_t * s3, int n);

C source (generator function):
void
cogorc_downsample_vert_cosite_3tap (uint8_t * d1, uint8_t * s1, uint8_t * 
s2, uint8_t * s3, int n)
{
  OrcExecutor _ex, *ex = &_ex;
  static int p_inited = 0;
  static OrcProgram *p = 0;

  if (!p_inited) {
    orc_once_mutex_lock ();
...
}
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Generated code

C source (backup function):
void
static void
_backup_cogorc_downsample_vert_cosite_3tap (OrcExecutor *ex)
{
  int i;
  int8_t * var0;
  const int8_t * var4;
  const int8_t * var5;
  const int8_t * var6;
...
}

Test Code: 110 lines of C code

Assembly Code (optional): 395 for SSE, 216 for Neon
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GStreamer Plugins using Orc

adder

audioconvert

videoscale

videotestsrc

volume

deinterlace

videobox

videomixer

cog

colorspace

invtelecine
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Schrödinger Orc status

● Used everywhere in schro
● Limited by Orc features
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Cairo Orc status

● Orc backend is slightly faster than SSE
● Orc backend handles more operators than SSE 

backend
● Everything in place to write a Grand Unified 

Compositor function (>1e9 combinations)
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videoscale speed comparison
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colorspace speed comparison
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Emergent Features

What opportunities arise when writing SIMD code 
is quick and easy?



 
(c) 2009 Entropy Wave Inc

Emergent Features

10/16-bit video processing

floating point video processing

quality vs. time tradeoffs
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Emergent Features
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Limitations

● 0.4 ABI is horrific
● Fixed-size arrays everywhere
● Limited number of constants/parameters
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Opportunities

● Instruction Scheduler
Reorder instruction stream to improve processor 
parallelization

● Multi-register allocation
Do more operations on full registers

● Better handling of register spills/constant loading
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Future Directions

● Alignment characteristics for arrays
● Swizzling, shuffling opcodes
● Table lookup opcodes
● Convolution load opcodes
● Non-loop-based functions (for 8x8 DCT)
● Exposure of backend code generators in API
● Macros/high-level opcodes


