
Motivation
Our Results

Summary

Adaptive video streaming with Ice and GStreamer
Using ICE middleware with GStreamer to implement real-time QoS-aware video

streaming for remotely controlled vehicle.

Andrey Nechypurenko
andreynech@gmail.com

Maksym Parkachov
lazy.gopher@gmail.com

GStreamer Conference, 2010

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Outline

1 Motivation
Building remotely controlled vehicle
Problem statement

2 Our Results
Implementation Strategy
Adaptation

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Building remotely controlled vehicle
Problem statement

Let’s build the vehicle and control it over the Internet

As a hobby project, we start developing small vehicle equipped with on-board
computer connected to WLan adapter and web-camera. The idea was to control the
car over Internet.

Main challenges

Find or build mechanical platform
Build electronic which can:

Capture video from camera
Compress live video stream to h264 format in real-time
Support W-WLan connectivity
Have enough IO channels to control motors

Develop software which can:
Deliver video stream and sensor data to the remote driver
Display live video stream to the driver
Receive user input such as steering and acceleration
Deliver control commands from the driver to the vehicle
software and drive actuators
Support client and server NAT and firewall traversal
without the need to configure firewall on the client side
Provide high quality video under variable network
conditions

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Building remotely controlled vehicle
Problem statement

Hardware solutions

Hardware used

BeagleBoard C4

Logitech 9000Pro camera

USB HUB

D-Link USB WLan (rt73usb)

SparkFun logic level converter

SparkFun DC/DC converter
breakout

Reely buggy

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Building remotely controlled vehicle
Problem statement

High level system overview

The whole system software has two main tasks:

Deliver video stream and sensor data from the vehicle to the remote driver and

Deliver control commands from the driver to the vehicle software and drive vehicle
actuators.

Communication happens over the Internet where it is typical to have two firewalls
(and/or NATs) on the client and server side.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Building remotely controlled vehicle
Problem statement

Need for adaptive video streaming

It is important to provide constant frame rate with predictable latency to precisely
control the vehicle. Otherwise, the wall may suddenly appears ahead of the car :-) .

Negative effect of the changing network conditions leads to:

1 Delays in video stream (picture freezes).
2 Corrupted frames (because of dropped frames, etc.).
3 “Fast forward” effect when the next chunk of data arrives.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Solution - QoS aware streaming

The adaptive Quality of Service (QoS) aware streaming implementation is required to
let the driver precisely control remote vehicle.

To solve the problems mentioned above:

Use TCP instead of UDP to get better feedback about packet delivery status.

Permanently monitor the size of output queue with compressed frames to deduce
the current QoS conditions.

Define the set of states characterized by maximum and minimum queue size to
transition to the better or worth state. In addition, the time-based weight is
introduced which is calculated based on the overall time spent in certain state. It
prevents the system from permanently jumping from one state to another.

React on the state changes by dynamically adjusting frame size and codec target
bitrate (if it is supported by codec).

The core adaptation logic resides in the vehicle on-board application.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Main software modules

To provide this functionality two main modules are required:

Driver application which will be further reffered as cockpit.
Vehicle on-board application which will be reffered as vehicle.

In addition, to perform firewall traversal in the secure and efficient way, additional
application is required on the server side. In this project, ZeroC Ice open-source
middleware is used for all communication needs.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Implementation strategy

The vehicle on-board application has the following responsibilities:

Receive control commands (such as steering and acceleration) from remote driver

control connected accelerators based on the received commands. In particular,
send motor control commands over I2C interface.

Capture video from camera and compress it in real-time.

Send captured video to the cockpit application.

Collect statistic about network bandwidth to perform adaptation in case of
changed network conditions. In particular, the frame size could be reduced,
compression rate could be increased or even frame rate could be reduced if the
bandwidth is not enough to deliver the video on time.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Cockpit application.

Cockpit application

Cockpit application is responsible for receiving video stream, decoding, and
visualizing it.

In addition cockpit application receives control signals from input hardware and
transmit commands to the vehicle.

Implementation is heavily multithreaded and uses graphics hardware acceleration.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Cockpit application.

Cockpit application is
written mainly with
OpenGL. The whole
interface is designed as a
3D model in Blender.
There are four main
elements:

1 Video plane - surface where each video frame
is placed as a texture.

2 Steering wheel - to provide visual feedback to
the steering actions of the driver.

3 Tachometer - to provide visual feedback to the
acceleration actions.

4 Message area - surface where messages will
appear in form of 3D text slightly shifted
towards the viewer.

There is a desperate need for 3D artist :-) .

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Alternatives for streaming implementations

Two implementation options were
considered:

Using GStreamer RTSP server.

Custom transport protocol for RTP
payload using Ice middleware.

To make final decision, both variants were
implemented and compared.

Reasons why Ice was considered as communication solution:

Reduce complexity when implementing complex bidirectional communication.

Transparently handles cross-platform issues such as endianess.

There are two versions of Ice. IceE which has reduced footprint and easier to
cross-compile. The complete version provides the full set of functionality.

Very easy to change the communication protocol. Changing between UDP,
TCP or SSL is the matter of change endpoint description in the configuration file.

There is service application Glacier which solves firewall/NAT related problems.
Asynchronous Method Invocation (AMI) which makes possible to collect more
information about bufferization and transmission performance.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Test setup

The following pipeline is currently used on the BeagleBoard for video capturing and
encoding. There is a placeholder (videotestsrc) for rear-view camera which is not yet
mounted on the current model (but tested, and it works).

Capturing and encoding pipeline:

videotestsrc pattern=”snow” ! video/x-raw-yuv, framerate=30/1,
width=80, height=60 ! videomixer name=mix ! videoscale
name=qos-scaler ! capsfilter name=qos-caps
caps=video/x-raw-yuv, width=320, height=240 ! ffmpegcolorspace
! video/x-raw-yuv, format=(fourcc)UYVY ! TIVidenc1
codecName=h264enc engineName=codecServer bitRate=320000
encodingPreset=2 genTimeStamps=TRUE byteStream=TRUE ! rtph264pay
pt=96 ! appsink name=icesink v4l2src always-copy=FALSE !
video/x-raw-yuv, width=320, height=240, framerate=30/1 ! mix.

Based on the observed QoS conditions and derived system state, caps of the
qos-caps capsfilter are dynamically adjusted to control frame size.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Test setup

The following pipeline is currently used by the cockpit application.

Decoding pipeline:

appsrc ! application/x-rtp, encoding-name=(string)H264,
payload=(int)96 ! gstrtpjitterbuffer latency=10 ! rtph264depay
! video/x-h264, framerate=30/1 ! decodebin2 ! videoscale !
video/x-raw-yuv, width=640, height=480, framerate=30/1 !
clockoverlay halign=right valign=bottom time-format="%Y/%m/%d
%H:%M:%S" ! ffmpegcolorspace ! video/x-raw-rgb, bpp=24,
depth=24 ! fakesink sync=1

Frame hand-off mechanism provided by fakesink element is used to get access to
raw decoded frames. Cockpit application then uses received frame to create and
update OpenGL texture which is mapped to the placeholder plane defined by the 3D
interface model.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Test setup

For test purposes, slightly modified encoding pipeline is used
to feed the prerecorded video. Original file is scaled down on
the fly to make the test comparable with live streaming from
web-camera.
Pipeline for cockpit application was not changed.

Encoding pipeline for the vehicle application test

filesrc location=big_buck_bunny_480p_h264.mov ! qtdemux !
ffdec_h264 ! videoscale name=qos-scaler ! capsfilter
name=qos-caps caps=video/x-raw-yuv,width=320,height=240 ! tee
name=t ! queue2 ! x264enc name=encoder byte-stream=true
bitrate=300 speed-preset=superfast subme=6 ! rtph264pay pt=96 !
appsink name=icesink t. ! queue2 ! ffmpegcolorspace !
autovideosink

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Test setup

Linux kernel network traffic shaping capabilities are used to restrict the available
bandwidth and see how both streaming implementations would react on it.

1 MPlayer video output window.
2 Terminal window where traffic shaping

commands are issued.
3 MPlayer console output.
4 KNemo network monitor window.

1 Cockpit application window.
2 Terminal window where traffic shaping

commands are issued.
3 Vehicle application console output.
4 KNemo network monitor window.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Adaptation performance test for GStreamer RTSP server

SCREEN-CAST is provided as a separate download.

screencast-rtsp.ogv - Theora video

Link: https://docs.google.com/leaf?id=
0BzV4szKbuvKwNDBhZTMyMTItMGM5Zi00NGFmLThlOGMtMjAzYjlmYWZjMDQx&hl=
en

screencast-rtsp.avi - Xvid mpeg4

Link: https://docs.google.com/leaf?id=
0BzV4szKbuvKwN2E2MmFlMDctM2MxYy00YjJhLWIyMjItOTUwNjRmZjhmODBk&hl=
en

GSTC10_Nechypurenko_Parkachov.zip

There is also a bundle with mpeg4 (avi) files, short readme and PDF presentation with
embedded video available. Link: https://docs.google.com/leaf?id=
0BzV4szKbuvKwNTEwYTQwOGUtNzAzNi00NjQ5LTk2MjEtMWIzYTQzNjVkZTRh&hl=
en

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer

https://docs.google.com/leaf?id=0BzV4szKbuvKwNDBhZTMyMTItMGM5Zi00NGFmLThlOGMtMjAzYjlmYWZjMDQx&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwNDBhZTMyMTItMGM5Zi00NGFmLThlOGMtMjAzYjlmYWZjMDQx&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwNDBhZTMyMTItMGM5Zi00NGFmLThlOGMtMjAzYjlmYWZjMDQx&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwN2E2MmFlMDctM2MxYy00YjJhLWIyMjItOTUwNjRmZjhmODBk&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwN2E2MmFlMDctM2MxYy00YjJhLWIyMjItOTUwNjRmZjhmODBk&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwN2E2MmFlMDctM2MxYy00YjJhLWIyMjItOTUwNjRmZjhmODBk&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwNTEwYTQwOGUtNzAzNi00NjQ5LTk2MjEtMWIzYTQzNjVkZTRh&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwNTEwYTQwOGUtNzAzNi00NjQ5LTk2MjEtMWIzYTQzNjVkZTRh&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwNTEwYTQwOGUtNzAzNi00NjQ5LTk2MjEtMWIzYTQzNjVkZTRh&hl=en


Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Important observations for RTSP server

When available bandwidth decreased
below the level required to transmit the
video with current encoding parameters
(resolution, frame rate, quality, etc.):

Communication channel is saturated.

Displayed frame rate is significantly
reduced.

No adaptation is occurred.

“Old” frames might be also dropped
which leads to lowered framerate
compared to the original video.

Conclusion:

Such behavior is unacceptable for real-time streaming required to control remote
vehicle.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Adaptation performance test for VETER infrastructure

SCREEN-CAST is provided as a separate download.

screencast-veter.ogv - Theora video

Link: https://docs.google.com/leaf?id=
0BzV4szKbuvKwODc5NmI2OGYtMzNiZi00YzkxLWEwNGYtM2JhY2JmYTBjZjIz&hl=en

screencast-veter.avi - Xvid mpeg4

Link: https://docs.google.com/leaf?id=
0BzV4szKbuvKwMTcxNjg2ODQtYmMwNi00OTQ0LWE5MmItMTlhMDU3OWI5ZGY2&hl=
en

GSTC10_Nechypurenko_Parkachov.zip

There is also a bundle with mpeg4 (avi) files, short readme and PDF presentation with
embedded video available. Link: https://docs.google.com/leaf?id=
0BzV4szKbuvKwNTEwYTQwOGUtNzAzNi00NjQ5LTk2MjEtMWIzYTQzNjVkZTRh&hl=
en

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer

https://docs.google.com/leaf?id=0BzV4szKbuvKwODc5NmI2OGYtMzNiZi00YzkxLWEwNGYtM2JhY2JmYTBjZjIz&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwODc5NmI2OGYtMzNiZi00YzkxLWEwNGYtM2JhY2JmYTBjZjIz&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwMTcxNjg2ODQtYmMwNi00OTQ0LWE5MmItMTlhMDU3OWI5ZGY2&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwMTcxNjg2ODQtYmMwNi00OTQ0LWE5MmItMTlhMDU3OWI5ZGY2&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwMTcxNjg2ODQtYmMwNi00OTQ0LWE5MmItMTlhMDU3OWI5ZGY2&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwNTEwYTQwOGUtNzAzNi00NjQ5LTk2MjEtMWIzYTQzNjVkZTRh&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwNTEwYTQwOGUtNzAzNi00NjQ5LTk2MjEtMWIzYTQzNjVkZTRh&hl=en
https://docs.google.com/leaf?id=0BzV4szKbuvKwNTEwYTQwOGUtNzAzNi00NjQ5LTk2MjEtMWIzYTQzNjVkZTRh&hl=en


Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Important observations for VETER infrastructure

When available bandwidth decreased:

Vehicle application detects changed
networking condition.

Reacts by reducing frame size (current
implementation divides the original
size by the power of two for each
state).

Keeps the same frame rate as original
video.

As a result, used bandwidth is below
current limit and is not saturated.

Conclusion:

Quality of the video is reduced but frame rate remains the same, which is
important for real-time remote control.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Implementation Strategy
Adaptation

Important observations for VETER infrastructure

After preconfigured amount of time,
attempts to return to the original video
quality (frame size).

If required bandwidth available,
continues to increase frame size.

Conclusion:

Improved bandwidth usage and as a result best possible quality with constant
frame rate is presented to the drivers.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Summary

Conclusions:

Currently there is no out of the box solution for adaptive real-time video streaming
suited for embedded system.

Using GStreamer and Ice it is possible to build such solution.

To react on network QoS changes, frame size could be changed on the fly using
videoscale or appropriate hardware accelerated elements like for example
TIVidScale.

Future work:

Transform the car to remotely controlled quad-copter.
Investigate if it is possible to change encoder’s target bitrate on the fly. If yes,
which encoders does really support it. In particular if it is supported by DSP-based
encoders.

Experiment with two cameras and stereo vision.

Write more documentation (in particular on how to cross-compile the project with
OE/Angstrom) to attract more contributors.

Earn the first million with it. See the nexst slide to get to know how... ;-)

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Motivation
Our Results

Summary

Robot races

PlayerPlayer Player

Auction

for winner
Prise

Organisational
Expenses

Race
Organizer

$ $ $

Ticket Ticket

Ticket

$
$

“Driver” can buy “ticket” (SSL certificate) on
auction such as eBay and participate in the
race from all over the world. Collected
money are to pay prize for winners, cover
organizational expenses and make profit.

This is a good example how the race track
can looks like. With good Internet
connection it is perfect place to conduct
races.

We are looking for business partner

We are completely prepared from the technical point of view. However, we have no
marketing, financial, administrative, etc. experience and looking for the partner(s)
who can help us from the business side.

Please feel free to contact us at: andreynech@gmail.com

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Appendix
For Further Reading
Backup slides

Source code and information availability I

Blog:
http://veter-project.blogspot.com
VETER-project blog with regular updates about the project.

Gitorious:
http://www.gitorious.org/veter
Complete source code and documentation repostiroy (including this presentation).

Wiki:
http://www.gitorious.org/veter/pages/Home
General information about project and further relevant links could be found here.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer

http://veter-project.blogspot.com
http://www.gitorious.org/veter
http://www.gitorious.org/veter/pages/Home


Appendix
For Further Reading
Backup slides

Main parts assembled together

Wiring

On the picture at the left hand side there are two connectors for the servo-controllers
(steering and acceleration). They are connected to the BeagleBoard’s +1.8V GPIOs
through level converter to provide +5V required for servos. The board is powered
through DC-DC converter to provide stable +5V power from the battery.
The right hand side picture illustrates how electronic components are mounted on the
car. There is also camera fixed on the plastic cover.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer



Appendix
For Further Reading
Backup slides

Remote interface definition

interface StreamReceiver {
["ami"] void nextChunk(ByteSeq chunk);
idempotent QoSReport getQoSReport();

};
interface MotorControl {
idempotent void setDuties(MotorDutySeq duties);

};
interface RemoteVehicle {
. . .
idempotent MotorControl* motorControlInterface();
idempotent void addStreamReceiver(StreamReceiver *callback);

};

RemoteVehicle and MotorControl interfaces are implemented within vehicle
application.
StreamReceiver is the callback interface to receive compressed video and
sensor data (if any). It is implemented by the cockpit application.
Invocations on StreamReceiver interface are performed using Ice
Asynchronous Method Invocation (AMI) which makes possible to collect more
information about bufferization and transmission performance. This
information is used to to derive QoS state and trigger adaptation actions.

veter-project.blogspot.com, Andrey Nechypurenko, Maksym Parkachov Adaptive video streaming with Ice and GStreamer


	Motivation
	Building remotely controlled vehicle
	Problem statement

	Our Results
	Implementation Strategy
	Adaptation

	Summary
	Appendix
	Appendix
	
	



