

26.10.10 - Gstreamer Conference
Florent Thiery - Ubicast

Using Gstreamer for
building

Automated Webcasting
Systems

Case study

Agenda

● About Ubicast
● Easycast

– Goals & Constraints

– Software architecture

● Gstreamer
– As webcasting framework

– As automation framework

● Python & gstreamer
● Main challenges

About UbiCast
● 3 years old french company

~10 people (6 devs, 3 gst)

● Produces automated
webcasting systems

– Turnkey, end-to-end
solution

– Designed for mass video
production

– Easy to use

– Automated capture
features

– Automated publishing
workflow

● Applications

– Education

– Corporate training

– Conference webcasting
● Products

– EasyCast capture station

– WebTV

Solution overview

● Presentation
capture

● Transparent
● End-to-end
● Rich Media

What we sell

● Touchscreen appliances with accessories
● Services (training, suport, WebTV + third party

hosting services, custom dev)

How it looks

WebTV
● Live & VOD
● Remote control
● Metadata editing
● Stats ...

Easycast
● Touchscreen GUI
● Robotic network camera support
● Tracking features
● Simultaneous XGA & A/V capture
● One-push publishing

Goals

● Ease of use by non-specialists

– Touchscreen

– Autodetection

– Production & post-
production automation

● Turnkey solution

– Appliance

– Integrated encoding,
streaming, processing

– Hardware integration (station,
accessories)

– Web/SaaS integration

● Technology agnostic

– Video formats

– Third party providers

– Unobtrusive (hardware
capture, « passive
tracking »)

– Open standards
(RTP/http/ftp/...)

Project constraints

● "Small startup friendly"
– OSS software based

– Run on "commodity hardware"

– Scripting language

● Parallel, heavy tasks
– Heavily multi threaded

– Fully asynchronous (GUIs hate http)

– Low-level language core

Easycast Software Stack

● Appliance -> Linux (Ubuntu-based)

● Web integration -> twisted

● Touchscreen / rich multimedia interface -> clutter

● Multimedia

– Decoding, encoding, streaming ... -> gstreamer

– Image analysis -> OpenCV

– Audio analysis -> gstreamer plugins

● Gobject MainLoop

● DBus (NetworkManager, HAL, utility daemons)

● Gnome technologies: gconf, gnomevfs, ...

● python : bindings for everything

Gstreamer as Webcasting
framework

● Encoding, Transcoding & Streaming : many implemented
protocols, codecs & muxers

– « Classic » pipeline (1x video, 1x audio, local encoder,
rtp/h264 encoder)

● Hardware support

– capture cards
● audio: overall good support for single channel devices
● video: good V4L/1394 support

– network devices friendly: good results with most network
devices (http-mjpeg-multipart/rtsp-h264); work done for
elphel open hardware cameras
(http://code.google.com/p/gst-plugins-elphel/)

● Image compositing using gst-plugins-gl

Gstreamer as automation
framework

● http multipart metadata parsing (SONY movement metadata extraction)

● OpenCV

– Largest open source image processing library

– Limitations : mostly scientific, input/output layers are large patched
blobs, packaging/modularity issues, hard to share resources with other
apps

● OpenCV & gstreamer

– gst-opencv http://github.com/Elleo/gst-opencv

– Keeps the core of opencv in a compact package

– Shares resources

– gst events: great api for forwarding results upper layers

– Great plugin api

● Audio filtering / analysis

Miscellaneous uses

● Asynchronous / automagically threaded
– image conversion/resizing

– signal probing

– large file copy with pauseability and progress
reporting (which AFAIK gnomevfs does not
provide) – gnomevfssink too simple for ftp

● Port scanner

Python & Gstreamer
● The tremendous power of gst.parse_launch

– Prototype on the command line

– Quickly port and interact

– Result: gstreamer python programming is 80% string manipulation
(concatenating pipelines portions) ; elements naming is crucial

● gstmanager (http://code.google.com/p/gstmanager/)

– Simple api wrapper

– gst.event forwarding (broadcasted)

– Debug helper (print gst-launch-compatible reconstructed pipeline
description)

– Overlay plugin system, but hard to get it right

● Python bindings are very good but some low levels feature make it crash
(ex: notify on queue filling states), sometimes simpler is better (e.g. property
polling)

Main challenges
● Learning curve

– It's a long road just covering the basics (tools, doc, debugging, ...)

– Writing small apps helps discovering. Tool: http://code.google.com/p/gst-gengui/

● As a company, gst skills are hard to find

● A/V desync is live pipeline's worst nightmare

– Developped "clap" software for long run tests

– Failed detecting drifts automatically

● MT safetyness – gobject.idle_add is your friend, especially with twisted / clutter mix

● Debugging blockings on very large pipelines is hard to figure out (queue uses). Tool:
http://code.google.com/p/gst-viewperf/

● For consistent behaviours

– Better to stick with one single native recording format

– Find lowest common denominator for caps

● Non linear editing (gnonlin) is hard ; we ended up used third party utilities (oggtools)

● Many small hacks for safety (e.g. check target file size is really growing, ...)

Main challenges:
hardware support

● Ok, not directly gstreamer related but it's a pain to find professional devices
supporting Linux. Testing/torture is mandatory

● Most professional A/V manufacturers don't know/don't care about gstreamer
(not the same in embedded world !)

● Some of them have V4L apis (but no HAL/udev rules, limited V4L
compliance, kernel hacks...)

● The others have proprietary APIs (-> MediaMagic – space for ecosystem)

● Most of them didn't offer Linux support at all 3 years back, but this is
changing !

● Sometimes unreliable behaviour but most of the time lower level problems
than gstreamer (kernel)

● Hardware often causes system freezes

● Hardware-specific additional latency → delayer « hackish » element

Main challenges :
The version choice

● Performance and behaviour will vary
among releases

● For an appliance, validating/developing
 against a single distribution is easier
(e.g. Ubuntu 8.10 – assuming tests
done by vendor)

● Many tests required to stabilize a
version

● Having performance-oriented
benchmarking routines would help choosing versions

● How to apply small patches without compromising distro
stability/integrity ? Features/fixes propagation delay → often easier to
use hacks in production

Main challenges :
dynamic pipelines

● Dynamic pipelines ~= adding/removing branches

– Why ? Because you can't (easily) share hardware ressources
between pipelines

– adding is quite straightforward

– removing without noticeable hiccups is harder

– pad blocking / unlink / unlock ... not easy with a/v pipelines !

● The recording case: the muxing issue

– muxers can't reset timestamps dynamically (bug
https://bugzilla.gnome.org/show_bug.cgi?id=561224)

– Restarting a modified pipeline worked very well for us (KISS), but
care for hardware liberation delays (e.g. usb audio) !

● Found it easier to run parallel pipelines (ex : xga processing)

To sum up
● Gstreamer is a wonderful framework, incredible

potential
● Gstreamer + Python is a powerful combination
● Stable VS Latest problematic/frustrating in

production context
● KISS works
● We underestimated the testing effort
● We underestimated what users can do →

« safety cream »
● Not yet easy to use dynamically

Thank you. Any questions ?

Please come and check it out !

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20

